与 SQL 的比较#
由于许多潜在的 pandas 用户对 SQL 有所了解,因此本页面旨在提供一些关于如何使用 pandas 执行各种 SQL 操作的示例。
如果您是 pandas 的新手,您可能需要先阅读 10 分钟了解 pandas 以熟悉该库。
按照惯例,我们导入 pandas 和 NumPy 如下
In [1]: import pandas as pd
In [2]: import numpy as np
大多数示例将使用 pandas 测试中找到的 tips
数据集。我们将数据读入名为 tips
的 DataFrame,并假设我们有一个相同名称和结构的数据库表。
In [3]: url = (
...: "https://raw.githubusercontent.com/pandas-dev"
...: "/pandas/main/pandas/tests/io/data/csv/tips.csv"
...: )
...:
In [4]: tips = pd.read_csv(url)
In [5]: tips
Out[5]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
.. ... ... ... ... ... ... ...
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2
[244 rows x 7 columns]
副本与就地操作#
大多数 pandas 操作返回 Series
/DataFrame
的副本。要使更改“生效”,您需要将其分配给一个新变量
sorted_df = df.sort_values("col1")
或覆盖原始变量
df = df.sort_values("col1")
注意
您将看到一些方法可以使用 inplace=True
或 copy=False
关键字参数
df.replace(5, inplace=True)
关于弃用和删除大多数方法(例如 dropna
)的 inplace
和 copy
存在着积极的讨论,除了极少数方法(包括 replace
)。在 Copy-on-Write 的背景下,这两个关键字将不再需要。该提案可以在 此处 找到。
SELECT#
在 SQL 中,选择是使用您要选择的列的逗号分隔列表(或 *
选择所有列)完成的
SELECT total_bill, tip, smoker, time
FROM tips;
在 pandas 中,列选择是通过将列名称列表传递给 DataFrame 完成的
In [6]: tips[["total_bill", "tip", "smoker", "time"]]
Out[6]:
total_bill tip smoker time
0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
2 21.01 3.50 No Dinner
3 23.68 3.31 No Dinner
4 24.59 3.61 No Dinner
.. ... ... ... ...
239 29.03 5.92 No Dinner
240 27.18 2.00 Yes Dinner
241 22.67 2.00 Yes Dinner
242 17.82 1.75 No Dinner
243 18.78 3.00 No Dinner
[244 rows x 4 columns]
在没有列名称列表的情况下调用 DataFrame 将显示所有列(类似于 SQL 的 *
)。
在 SQL 中,您可以添加一个计算列
SELECT *, tip/total_bill as tip_rate
FROM tips;
在 pandas 中,您可以使用 DataFrame 的 DataFrame.assign()
方法来追加一个新列
In [7]: tips.assign(tip_rate=tips["tip"] / tips["total_bill"])
Out[7]:
total_bill tip sex smoker day time size tip_rate
0 16.99 1.01 Female No Sun Dinner 2 0.059447
1 10.34 1.66 Male No Sun Dinner 3 0.160542
2 21.01 3.50 Male No Sun Dinner 3 0.166587
3 23.68 3.31 Male No Sun Dinner 2 0.139780
4 24.59 3.61 Female No Sun Dinner 4 0.146808
.. ... ... ... ... ... ... ... ...
239 29.03 5.92 Male No Sat Dinner 3 0.203927
240 27.18 2.00 Female Yes Sat Dinner 2 0.073584
241 22.67 2.00 Male Yes Sat Dinner 2 0.088222
242 17.82 1.75 Male No Sat Dinner 2 0.098204
243 18.78 3.00 Female No Thur Dinner 2 0.159744
[244 rows x 8 columns]
WHERE#
SQL 中的过滤通过 WHERE 子句完成。
SELECT *
FROM tips
WHERE time = 'Dinner';
DataFrame 可以通过多种方式进行过滤;最直观的方式是使用 布尔索引。
In [8]: tips[tips["total_bill"] > 10]
Out[8]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
.. ... ... ... ... ... ... ...
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2
[227 rows x 7 columns]
上面的语句只是将一个包含 True
/False
对象的 Series
传递给 DataFrame,返回所有 True
的行。
In [9]: is_dinner = tips["time"] == "Dinner"
In [10]: is_dinner
Out[10]:
0 True
1 True
2 True
3 True
4 True
...
239 True
240 True
241 True
242 True
243 True
Name: time, Length: 244, dtype: bool
In [11]: is_dinner.value_counts()
Out[11]:
time
True 176
False 68
Name: count, dtype: int64
In [12]: tips[is_dinner]
Out[12]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
.. ... ... ... ... ... ... ...
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2
[176 rows x 7 columns]
就像 SQL 的 OR
和 AND
一样,可以使用 |
(OR
) 和 &
(AND
) 将多个条件传递给 DataFrame。
晚餐小费超过 5 美元
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
In [13]: tips[(tips["time"] == "Dinner") & (tips["tip"] > 5.00)]
Out[13]:
total_bill tip sex smoker day time size
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
181 23.33 5.65 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3
至少 5 人的聚餐小费或账单总额超过 45 美元
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
In [14]: tips[(tips["size"] >= 5) | (tips["total_bill"] > 45)]
Out[14]:
total_bill tip sex smoker day time size
59 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5
使用 notna()
和 isna()
方法进行 NULL 检查。
In [15]: frame = pd.DataFrame(
....: {"col1": ["A", "B", np.nan, "C", "D"], "col2": ["F", np.nan, "G", "H", "I"]}
....: )
....:
In [16]: frame
Out[16]:
col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I
假设我们有一个与上面 DataFrame 结构相同的表。我们可以使用以下查询查看 col2
为 NULL 的记录
SELECT *
FROM frame
WHERE col2 IS NULL;
In [17]: frame[frame["col2"].isna()]
Out[17]:
col1 col2
1 B NaN
获取 col1
不为 NULL 的项可以使用 notna()
。
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
In [18]: frame[frame["col1"].notna()]
Out[18]:
col1 col2
0 A F
1 B NaN
3 C H
4 D I
GROUP BY#
在 pandas 中,SQL 的 GROUP BY
操作是使用同名方法 groupby()
执行的。 groupby()
通常指的是将数据集拆分为多个组,对每个组应用某个函数(通常是聚合),然后将这些组组合在一起的过程。
一个常见的 SQL 操作是在整个数据集中获取每个组的记录数量。例如,一个查询可以获取我们每个性别留下的提示数量
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
pandas 等效代码如下
In [19]: tips.groupby("sex").size()
Out[19]:
sex
Female 87
Male 157
dtype: int64
请注意,在 pandas 代码中,我们使用的是 DataFrameGroupBy.size()
而不是 DataFrameGroupBy.count()
。这是因为 DataFrameGroupBy.count()
将函数应用于每个列,返回每个列中 NOT NULL
记录的数量。
In [20]: tips.groupby("sex").count()
Out[20]:
total_bill tip smoker day time size
sex
Female 87 87 87 87 87 87
Male 157 157 157 157 157 157
或者,我们可以将 DataFrameGroupBy.count()
方法应用于单个列
In [21]: tips.groupby("sex")["total_bill"].count()
Out[21]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64
也可以一次应用多个函数。例如,假设我们想查看小费金额在每周不同日期的差异 - DataFrameGroupBy.agg()
允许您将字典传递给分组后的 DataFrame,指示要对特定列应用哪些函数。
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thu 2.771452 62
*/
In [22]: tips.groupby("day").agg({"tip": "mean", "day": "size"})
Out[22]:
tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
通过将列的列表传递给 groupby()
方法,可以按多个列进行分组。
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thu 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thu 17 3.030000
*/
In [23]: tips.groupby(["smoker", "day"]).agg({"tip": ["size", "mean"]})
Out[23]:
tip
size mean
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000
JOIN#
JOIN
可以使用 join()
或 merge()
执行。默认情况下,join()
将根据 DataFrame 的索引进行连接。每种方法都有参数允许您指定要执行的连接类型(LEFT
、RIGHT
、INNER
、FULL
)或要连接的列(列名或索引)。
警告
如果两个键列都包含键为 null 值的行,则这些行将相互匹配。这与通常的 SQL 连接行为不同,可能会导致意外结果。
In [24]: df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)})
In [25]: df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)})
假设我们有两个与 DataFrame 相同名称和结构的数据库表。
现在让我们看一下各种类型的 JOIN
。
INNER JOIN#
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
# merge performs an INNER JOIN by default
In [26]: pd.merge(df1, df2, on="key")
Out[26]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
merge()
还提供参数用于您希望将一个 DataFrame 的列与另一个 DataFrame 的索引连接的情况。
In [27]: indexed_df2 = df2.set_index("key")
In [28]: pd.merge(df1, indexed_df2, left_on="key", right_index=True)
Out[28]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
3 D -1.135632 0.119209
LEFT OUTER JOIN#
显示 df1
中的所有记录。
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
In [29]: pd.merge(df1, df2, on="key", how="left")
Out[29]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
RIGHT JOIN#
显示 df2
中的所有记录。
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
In [30]: pd.merge(df1, df2, on="key", how="right")
Out[30]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
FULL JOIN#
pandas 还允许使用 FULL JOIN
,它显示数据集的双方,无论连接的列是否找到匹配项。截至撰写本文时,FULL JOIN
在所有 RDBMS(MySQL)中都不受支持。
显示两个表中的所有记录。
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
In [31]: pd.merge(df1, df2, on="key", how="outer")
Out[31]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
UNION#
UNION ALL
可以使用 concat()
执行。
In [32]: df1 = pd.DataFrame(
....: {"city": ["Chicago", "San Francisco", "New York City"], "rank": range(1, 4)}
....: )
....:
In [33]: df2 = pd.DataFrame(
....: {"city": ["Chicago", "Boston", "Los Angeles"], "rank": [1, 4, 5]}
....: )
....:
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
In [34]: pd.concat([df1, df2])
Out[34]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
SQL 的 UNION
与 UNION ALL
类似,但 UNION
会删除重复行。
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
在 pandas 中,您可以使用 concat()
与 drop_duplicates()
结合使用。
In [35]: pd.concat([df1, df2]).drop_duplicates()
Out[35]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
1 Boston 4
2 Los Angeles 5
LIMIT#
SELECT * FROM tips
LIMIT 10;
In [36]: tips.head(10)
Out[36]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
5 25.29 4.71 Male No Sun Dinner 4
6 8.77 2.00 Male No Sun Dinner 2
7 26.88 3.12 Male No Sun Dinner 4
8 15.04 1.96 Male No Sun Dinner 2
9 14.78 3.23 Male No Sun Dinner 2
一些 SQL 分析和聚合函数的 pandas 等效项#
带偏移量的 top n 行#
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
In [37]: tips.nlargest(10 + 5, columns="tip").tail(10)
Out[37]:
total_bill tip sex smoker day time size
183 23.17 6.50 Male Yes Sun Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
47 32.40 6.00 Male No Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3
88 24.71 5.85 Male No Thur Lunch 2
181 23.33 5.65 Male Yes Sun Dinner 2
44 30.40 5.60 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
85 34.83 5.17 Female No Thur Lunch 4
211 25.89 5.16 Male Yes Sat Dinner 4
每组 top n 行#
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
In [38]: (
....: tips.assign(
....: rn=tips.sort_values(["total_bill"], ascending=False)
....: .groupby(["day"])
....: .cumcount()
....: + 1
....: )
....: .query("rn < 3")
....: .sort_values(["day", "rn"])
....: )
....:
Out[38]:
total_bill tip sex smoker day time size rn
95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2
使用 rank(method='first')
函数实现相同功能
In [39]: (
....: tips.assign(
....: rnk=tips.groupby(["day"])["total_bill"].rank(
....: method="first", ascending=False
....: )
....: )
....: .query("rnk < 3")
....: .sort_values(["day", "rnk"])
....: )
....:
Out[39]:
total_bill tip sex smoker day time size rnk
95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
让我们找到 (tips < 2) 的每个性别组中 (rank < 3) 的小费。请注意,当使用 rank(method='min')
函数时,rnk_min
对于相同的 tip
保持不变(与 Oracle 的 RANK()
函数相同)
In [40]: (
....: tips[tips["tip"] < 2]
....: .assign(rnk_min=tips.groupby(["sex"])["tip"].rank(method="min"))
....: .query("rnk_min < 3")
....: .sort_values(["sex", "rnk_min"])
....: )
....:
Out[40]:
total_bill tip sex smoker day time size rnk_min
67 3.07 1.00 Female Yes Sat Dinner 1 1.0
92 5.75 1.00 Female Yes Fri Dinner 2 1.0
111 7.25 1.00 Female No Sat Dinner 1 1.0
236 12.60 1.00 Male Yes Sat Dinner 2 1.0
237 32.83 1.17 Male Yes Sat Dinner 2 2.0
UPDATE#
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
In [41]: tips.loc[tips["tip"] < 2, "tip"] *= 2
DELETE#
DELETE FROM tips
WHERE tip > 9;
在 pandas 中,我们选择应该保留的行,而不是删除它们
In [42]: tips = tips.loc[tips["tip"] <= 9]