食谱#
这是一个用于简短而实用的 pandas 食谱示例和链接的仓库。我们鼓励用户为本文档添加内容。
为本节添加有趣的链接和/或内联示例是一个很棒的首次 Pull Request。
已尽可能插入简化、浓缩、适合新用户的内联示例,以补充 Stack Overflow 和 GitHub 链接。许多链接包含比内联示例更详细的信息。
pandas (pd) 和 NumPy (np) 是仅有的两个缩写导入模块。其余模块保持显式导入,以方便新用户。
习语#
以下是一些巧妙的 pandas 习语
在一列上进行 if-then/if-then-else 操作,并将结果赋值给另一列或多列
In [1]: df = pd.DataFrame(
...: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
...: )
...:
In [2]: df
Out[2]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
if-then…#
在一列上进行 if-then 操作
In [3]: df.loc[df.AAA >= 5, "BBB"] = -1
In [4]: df
Out[4]:
AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
if-then 操作,并将结果赋值给 2 列
In [5]: df.loc[df.AAA >= 5, ["BBB", "CCC"]] = 555
In [6]: df
Out[6]:
AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555
添加另一行,使用不同的逻辑执行 -else 操作
In [7]: df.loc[df.AAA < 5, ["BBB", "CCC"]] = 2000
In [8]: df
Out[8]:
AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555
或者在设置好掩码后使用 pandas where
In [9]: df_mask = pd.DataFrame(
...: {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False] * 2}
...: )
...:
In [10]: df.where(df_mask, -1000)
Out[10]:
AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000
使用 NumPy 的 where() 进行 if-then-else
In [11]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [12]: df
Out[12]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [13]: df["logic"] = np.where(df["AAA"] > 5, "high", "low")
In [14]: df
Out[14]:
AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high
拆分#
In [15]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [16]: df
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [17]: df[df.AAA <= 5]
Out[17]:
AAA BBB CCC
0 4 10 100
1 5 20 50
In [18]: df[df.AAA > 5]
Out[18]:
AAA BBB CCC
2 6 30 -30
3 7 40 -50
构建条件#
In [19]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [20]: df
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
…和(不带赋值返回 Series)
In [21]: df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"]
Out[21]:
0 4
1 5
Name: AAA, dtype: int64
…或(不带赋值返回 Series)
In [22]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"]
Out[22]:
0 4
1 5
2 6
3 7
Name: AAA, dtype: int64
…或(带赋值修改 DataFrame。)
In [23]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 999
In [24]: df
Out[24]:
AAA BBB CCC
0 999 10 100
1 5 20 50
2 999 30 -30
3 999 40 -50
In [25]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [26]: df
Out[26]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [27]: aValue = 43.0
In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50
In [29]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [30]: df
Out[30]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [31]: Crit1 = df.AAA <= 5.5
In [32]: Crit2 = df.BBB == 10.0
In [33]: Crit3 = df.CCC > -40.0
可以硬编码
In [34]: AllCrit = Crit1 & Crit2 & Crit3
…或者可以使用动态构建的条件列表来完成
In [35]: import functools
In [36]: CritList = [Crit1, Crit2, Crit3]
In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)
In [38]: df[AllCrit]
Out[38]:
AAA BBB CCC
0 4 10 100
选择#
数据帧#
该 索引 文档。
In [39]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [40]: df
Out[40]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]:
AAA BBB CCC
0 4 10 100
2 6 30 -30
使用 loc 进行基于标签的切片和 iloc 位置切片 GH 2904
In [42]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]},
....: index=["foo", "bar", "boo", "kar"],
....: )
....:
有两种显式切片方法,以及第三种通用情况
基于位置的(Python 切片风格:不包含末尾)
基于标签的(非 Python 切片风格:包含末尾)
通用(任何切片风格:取决于切片是否包含标签或位置)
In [43]: df.loc["bar":"kar"] # Label
Out[43]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
# Generic
In [44]: df[0:3]
Out[44]:
AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
In [45]: df["bar":"kar"]
Out[45]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
当索引包含具有非零起始值或非单位增量的整数时,会出现歧义。
In [46]: data = {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1.
In [48]: df2.iloc[1:3] # Position-oriented
Out[48]:
AAA BBB CCC
2 5 20 50
3 6 30 -30
In [49]: df2.loc[1:3] # Label-oriented
Out[49]:
AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
In [50]: df = pd.DataFrame(
....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
....: )
....:
In [51]: df
Out[51]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]:
AAA BBB CCC
1 5 20 50
3 7 40 -50
新列#
使用 DataFrame.map(以前称为 applymap)高效且动态地创建新列
In [53]: df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})
In [54]: df
Out[54]:
AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1
In [55]: source_cols = df.columns # Or some subset would work too
In [56]: new_cols = [str(x) + "_cat" for x in source_cols]
In [57]: categories = {1: "Alpha", 2: "Beta", 3: "Charlie"}
In [58]: df[new_cols] = df[source_cols].map(categories.get)
In [59]: df
Out[59]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta
1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha
In [60]: df = pd.DataFrame(
....: {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]}
....: )
....:
In [61]: df
Out[61]:
AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3
方法 1:idxmin() 获取最小值的索引
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]:
AAA BBB
1 1 1
5 2 1
6 3 2
方法 2:排序然后获取每个的第一个
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]:
AAA BBB
0 1 1
1 2 1
2 3 2
注意相同的结果,除了索引。
多级索引#
该 多级索引 文档。
In [64]: df = pd.DataFrame(
....: {
....: "row": [0, 1, 2],
....: "One_X": [1.1, 1.1, 1.1],
....: "One_Y": [1.2, 1.2, 1.2],
....: "Two_X": [1.11, 1.11, 1.11],
....: "Two_Y": [1.22, 1.22, 1.22],
....: }
....: )
....:
In [65]: df
Out[65]:
row One_X One_Y Two_X Two_Y
0 0 1.1 1.2 1.11 1.22
1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22
# As Labelled Index
In [66]: df = df.set_index("row")
In [67]: df
Out[67]:
One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns])
In [69]: df
Out[69]:
One Two
X Y X Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# Now stack & Reset
In [70]: df = df.stack(0, future_stack=True).reset_index(1)
In [71]: df
Out[71]:
level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ["Sample", "All_X", "All_Y"]
In [73]: df
Out[73]:
Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
算术#
In [74]: cols = pd.MultiIndex.from_tuples(
....: [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]]
....: )
....:
In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols)
In [76]: df
Out[76]:
A B C
O I O I O I
n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215
m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804
In [77]: df = df.div(df["C"], level=1)
In [78]: df
Out[78]:
A B C
O I O I O I
n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0
m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
切片#
In [79]: coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")]
In [80]: index = pd.MultiIndex.from_tuples(coords)
In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"])
In [82]: df
Out[82]:
MyData
AA one 11
six 22
BB one 33
two 44
six 55
获取第一级和第一轴索引的横截面
# Note : level and axis are optional, and default to zero
In [83]: df.xs("BB", level=0, axis=0)
Out[83]:
MyData
one 33
two 44
six 55
…现在是第一轴的第二级。
In [84]: df.xs("six", level=1, axis=0)
Out[84]:
MyData
AA 22
BB 55
In [85]: import itertools
In [86]: index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"]))
In [87]: headr = list(itertools.product(["Exams", "Labs"], ["I", "II"]))
In [88]: indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"])
In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named
In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]
In [91]: df = pd.DataFrame(data, indx, cols)
In [92]: df
Out[92]:
Exams Labs
I II I II
Student Course
Ada Comp 70 71 72 73
Math 71 73 75 74
Sci 72 75 75 75
Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78
Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [93]: All = slice(None)
In [94]: df.loc["Violet"]
Out[94]:
Exams Labs
I II I II
Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [95]: df.loc[(All, "Math"), All]
Out[95]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80
In [96]: df.loc[(slice("Ada", "Quinn"), "Math"), All]
Out[96]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
In [97]: df.loc[(All, "Math"), ("Exams")]
Out[97]:
I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79
In [98]: df.loc[(All, "Math"), (All, "II")]
Out[98]:
Exams Labs
II II
Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80
排序#
In [99]: df.sort_values(by=("Labs", "II"), ascending=False)
Out[99]:
Exams Labs
I II I II
Student Course
Violet Sci 78 81 81 81
Math 77 79 81 80
Comp 76 77 78 79
Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76
Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73
部分选择,对排序的需求 GH 2995
级别#
缺失数据#
有关 缺失数据 的文档。
向前填充反转的时间序列
In [100]: df = pd.DataFrame(
.....: np.random.randn(6, 1),
.....: index=pd.date_range("2013-08-01", periods=6, freq="B"),
.....: columns=list("A"),
.....: )
.....:
In [101]: df.loc[df.index[3], "A"] = np.nan
In [102]: df
Out[102]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 NaN
2013-08-07 -0.424972
2013-08-08 0.567020
In [103]: df.bfill()
Out[103]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 -0.424972
2013-08-07 -0.424972
2013-08-08 0.567020
替换#
分组#
有关 分组 的文档。
与 agg 不同,apply 的可调用对象传递了一个子 DataFrame,使您可以访问所有列
In [104]: df = pd.DataFrame(
.....: {
.....: "animal": "cat dog cat fish dog cat cat".split(),
.....: "size": list("SSMMMLL"),
.....: "weight": [8, 10, 11, 1, 20, 12, 12],
.....: "adult": [False] * 5 + [True] * 2,
.....: }
.....: )
.....:
In [105]: df
Out[105]:
animal size weight adult
0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True
# List the size of the animals with the highest weight.
In [106]: df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()], include_groups=False)
Out[106]:
animal
cat L
dog M
fish M
dtype: object
In [107]: gb = df.groupby("animal")
In [108]: gb.get_group("cat")
Out[108]:
animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True
In [109]: def GrowUp(x):
.....: avg_weight = sum(x[x["size"] == "S"].weight * 1.5)
.....: avg_weight += sum(x[x["size"] == "M"].weight * 1.25)
.....: avg_weight += sum(x[x["size"] == "L"].weight)
.....: avg_weight /= len(x)
.....: return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])
.....:
In [110]: expected_df = gb.apply(GrowUp, include_groups=False)
In [111]: expected_df
Out[111]:
size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])
In [113]: def cum_ret(x, y):
.....: return x * (1 + y)
.....:
In [114]: def red(x):
.....: return functools.reduce(cum_ret, x, 1.0)
.....:
In [115]: S.expanding().apply(red, raw=True)
Out[115]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64
In [116]: df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]})
In [117]: gb = df.groupby("A")
In [118]: def replace(g):
.....: mask = g < 0
.....: return g.where(~mask, g[~mask].mean())
.....:
In [119]: gb.transform(replace)
Out[119]:
B
0 1
1 1
2 1
3 2
In [120]: df = pd.DataFrame(
.....: {
.....: "code": ["foo", "bar", "baz"] * 2,
.....: "data": [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....: "flag": [False, True] * 3,
.....: }
.....: )
.....:
In [121]: code_groups = df.groupby("code")
In [122]: agg_n_sort_order = code_groups[["data"]].transform("sum").sort_values(by="data")
In [123]: sorted_df = df.loc[agg_n_sort_order.index]
In [124]: sorted_df
Out[124]:
code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq="2min")
In [126]: ts = pd.Series(data=list(range(10)), index=rng)
In [127]: def MyCust(x):
.....: if len(x) > 2:
.....: return x.iloc[1] * 1.234
.....: return pd.NaT
.....:
In [128]: mhc = {"Mean": "mean", "Max": "max", "Custom": MyCust}
In [129]: ts.resample("5min").apply(mhc)
Out[129]:
Mean Max Custom
2014-10-07 00:00:00 1.0 2 1.234
2014-10-07 00:05:00 3.5 4 NaT
2014-10-07 00:10:00 6.0 7 7.404
2014-10-07 00:15:00 8.5 9 NaT
In [130]: ts
Out[130]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2min, dtype: int64
In [131]: df = pd.DataFrame(
.....: {"Color": "Red Red Red Blue".split(), "Value": [100, 150, 50, 50]}
.....: )
.....:
In [132]: df
Out[132]:
Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50
In [133]: df["Counts"] = df.groupby(["Color"]).transform(len)
In [134]: df
Out[134]:
Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1
In [135]: df = pd.DataFrame(
.....: {"line_race": [10, 10, 8, 10, 10, 8], "beyer": [99, 102, 103, 103, 88, 100]},
.....: index=[
.....: "Last Gunfighter",
.....: "Last Gunfighter",
.....: "Last Gunfighter",
.....: "Paynter",
.....: "Paynter",
.....: "Paynter",
.....: ],
.....: )
.....:
In [136]: df
Out[136]:
line_race beyer
Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100
In [137]: df["beyer_shifted"] = df.groupby(level=0)["beyer"].shift(1)
In [138]: df
Out[138]:
line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0
In [139]: df = pd.DataFrame(
.....: {
.....: "host": ["other", "other", "that", "this", "this"],
.....: "service": ["mail", "web", "mail", "mail", "web"],
.....: "no": [1, 2, 1, 2, 1],
.....: }
.....: ).set_index(["host", "service"])
.....:
In [140]: mask = df.groupby(level=0).agg("idxmax")
In [141]: df_count = df.loc[mask["no"]].reset_index()
In [142]: df_count
Out[142]:
host service no
0 other web 2
1 that mail 1
2 this mail 2
像 Python 的 itertools.groupby 一样分组
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=["A"])
In [144]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).groups
Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}
In [145]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).cumsum()
Out[145]:
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64
扩展数据#
拆分#
创建一个 DataFrame 列表,使用基于行中包含的逻辑的划分进行拆分。
In [146]: df = pd.DataFrame(
.....: data={
.....: "Case": ["A", "A", "A", "B", "A", "A", "B", "A", "A"],
.....: "Data": np.random.randn(9),
.....: }
.....: )
.....:
In [147]: dfs = list(
.....: zip(
.....: *df.groupby(
.....: (1 * (df["Case"] == "B"))
.....: .cumsum()
.....: .rolling(window=3, min_periods=1)
.....: .median()
.....: )
.....: )
.....: )[-1]
.....:
In [148]: dfs[0]
Out[148]:
Case Data
0 A 0.276232
1 A -1.087401
2 A -0.673690
3 B 0.113648
In [149]: dfs[1]
Out[149]:
Case Data
4 A -1.478427
5 A 0.524988
6 B 0.404705
In [150]: dfs[2]
Out[150]:
Case Data
7 A 0.577046
8 A -1.715002
透视#
有关 透视 的文档。
In [151]: df = pd.DataFrame(
.....: data={
.....: "Province": ["ON", "QC", "BC", "AL", "AL", "MN", "ON"],
.....: "City": [
.....: "Toronto",
.....: "Montreal",
.....: "Vancouver",
.....: "Calgary",
.....: "Edmonton",
.....: "Winnipeg",
.....: "Windsor",
.....: ],
.....: "Sales": [13, 6, 16, 8, 4, 3, 1],
.....: }
.....: )
.....:
In [152]: table = pd.pivot_table(
.....: df,
.....: values=["Sales"],
.....: index=["Province"],
.....: columns=["City"],
.....: aggfunc="sum",
.....: margins=True,
.....: )
.....:
In [153]: table.stack("City", future_stack=True)
Out[153]:
Sales
Province City
AL Calgary 8.0
Edmonton 4.0
Montreal NaN
Toronto NaN
Vancouver NaN
... ...
All Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0
All 51.0
[48 rows x 1 columns]
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]
In [155]: df = pd.DataFrame(
.....: {
.....: "ID": ["x%d" % r for r in range(10)],
.....: "Gender": ["F", "M", "F", "M", "F", "M", "F", "M", "M", "M"],
.....: "ExamYear": [
.....: "2007",
.....: "2007",
.....: "2007",
.....: "2008",
.....: "2008",
.....: "2008",
.....: "2008",
.....: "2009",
.....: "2009",
.....: "2009",
.....: ],
.....: "Class": [
.....: "algebra",
.....: "stats",
.....: "bio",
.....: "algebra",
.....: "algebra",
.....: "stats",
.....: "stats",
.....: "algebra",
.....: "bio",
.....: "bio",
.....: ],
.....: "Participated": [
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "no",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: "yes",
.....: ],
.....: "Passed": ["yes" if x > 50 else "no" for x in grades],
.....: "Employed": [
.....: True,
.....: True,
.....: True,
.....: False,
.....: False,
.....: False,
.....: False,
.....: True,
.....: True,
.....: False,
.....: ],
.....: "Grade": grades,
.....: }
.....: )
.....:
In [156]: df.groupby("ExamYear").agg(
.....: {
.....: "Participated": lambda x: x.value_counts()["yes"],
.....: "Passed": lambda x: sum(x == "yes"),
.....: "Employed": lambda x: sum(x),
.....: "Grade": lambda x: sum(x) / len(x),
.....: }
.....: )
.....:
Out[156]:
Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667
创建年和月交叉表
In [157]: df = pd.DataFrame(
.....: {"value": np.random.randn(36)},
.....: index=pd.date_range("2011-01-01", freq="ME", periods=36),
.....: )
.....:
In [158]: pd.pivot_table(
.....: df, index=df.index.month, columns=df.index.year, values="value", aggfunc="sum"
.....: )
.....:
Out[158]:
2011 2012 2013
1 -1.039268 -0.968914 2.565646
2 -0.370647 -1.294524 1.431256
3 -1.157892 0.413738 1.340309
4 -1.344312 0.276662 -1.170299
5 0.844885 -0.472035 -0.226169
6 1.075770 -0.013960 0.410835
7 -0.109050 -0.362543 0.813850
8 1.643563 -0.006154 0.132003
9 -1.469388 -0.923061 -0.827317
10 0.357021 0.895717 -0.076467
11 -0.674600 0.805244 -1.187678
12 -1.776904 -1.206412 1.130127
应用#
In [159]: df = pd.DataFrame(
.....: data={
.....: "A": [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
.....: "B": [["a", "b", "c"], ["jj", "kk"], ["ccc"]],
.....: },
.....: index=["I", "II", "III"],
.....: )
.....:
In [160]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:
In [161]: df_orgz = pd.concat(
.....: {ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()}
.....: )
.....:
In [162]: df_orgz
Out[162]:
0 1 2 3
I A 2 4 8 16.0
B a b c NaN
II A 100 200 NaN NaN
B jj kk NaN NaN
III A 10 20.0 30.0 NaN
B ccc NaN NaN NaN
将滚动应用于多个列,其中函数在返回标量之前计算 Series
In [163]: df = pd.DataFrame(
.....: data=np.random.randn(2000, 2) / 10000,
.....: index=pd.date_range("2001-01-01", periods=2000),
.....: columns=["A", "B"],
.....: )
.....:
In [164]: df
Out[164]:
A B
2001-01-01 -0.000144 -0.000141
2001-01-02 0.000161 0.000102
2001-01-03 0.000057 0.000088
2001-01-04 -0.000221 0.000097
2001-01-05 -0.000201 -0.000041
... ... ...
2006-06-19 0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113 0.000114
2006-06-22 0.000136 0.000109
2006-06-23 0.000027 0.000030
[2000 rows x 2 columns]
In [165]: def gm(df, const):
.....: v = ((((df["A"] + df["B"]) + 1).cumprod()) - 1) * const
.....: return v.iloc[-1]
.....:
In [166]: s = pd.Series(
.....: {
.....: df.index[i]: gm(df.iloc[i: min(i + 51, len(df) - 1)], 5)
.....: for i in range(len(df) - 50)
.....: }
.....: )
.....:
In [167]: s
Out[167]:
2001-01-01 0.000930
2001-01-02 0.002615
2001-01-03 0.001281
2001-01-04 0.001117
2001-01-05 0.002772
...
2006-04-30 0.003296
2006-05-01 0.002629
2006-05-02 0.002081
2006-05-03 0.004247
2006-05-04 0.003928
Length: 1950, dtype: float64
将滚动应用于多个列,其中函数返回标量(成交量加权平均价格)
In [168]: rng = pd.date_range(start="2014-01-01", periods=100)
In [169]: df = pd.DataFrame(
.....: {
.....: "Open": np.random.randn(len(rng)),
.....: "Close": np.random.randn(len(rng)),
.....: "Volume": np.random.randint(100, 2000, len(rng)),
.....: },
.....: index=rng,
.....: )
.....:
In [170]: df
Out[170]:
Open Close Volume
2014-01-01 -1.611353 -0.492885 1219
2014-01-02 -3.000951 0.445794 1054
2014-01-03 -0.138359 -0.076081 1381
2014-01-04 0.301568 1.198259 1253
2014-01-05 0.276381 -0.669831 1728
... ... ... ...
2014-04-06 -0.040338 0.937843 1188
2014-04-07 0.359661 -0.285908 1864
2014-04-08 0.060978 1.714814 941
2014-04-09 1.759055 -0.455942 1065
2014-04-10 0.138185 -1.147008 1453
[100 rows x 3 columns]
In [171]: def vwap(bars):
.....: return (bars.Close * bars.Volume).sum() / bars.Volume.sum()
.....:
In [172]: window = 5
In [173]: s = pd.concat(
.....: [
.....: (pd.Series(vwap(df.iloc[i: i + window]), index=[df.index[i + window]]))
.....: for i in range(len(df) - window)
.....: ]
.....: )
.....:
In [174]: s.round(2)
Out[174]:
2014-01-06 0.02
2014-01-07 0.11
2014-01-08 0.10
2014-01-09 0.07
2014-01-10 -0.29
...
2014-04-06 -0.63
2014-04-07 -0.02
2014-04-08 -0.03
2014-04-09 0.34
2014-04-10 0.29
Length: 95, dtype: float64
时间序列#
将一个矩阵(列为小时,行为天)转换为时间序列形式的连续行序列。 如何重新排列 Python pandas DataFrame?
计算 DatetimeIndex 中每个条目所属月份的第一天
In [175]: dates = pd.date_range("2000-01-01", periods=5)
In [176]: dates.to_period(freq="M").to_timestamp()
Out[176]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None)
重采样#
The Resample docs.
使用 Grouper 而不是 TimeGrouper 对值的进行时间分组
Grouper 的有效频率参数 Timeseries
使用 TimeGrouper 和另一个分组来创建子组,然后应用自定义函数 GH 3791
合并#
The Join docs.
将两个具有重叠索引的 DataFrame 连接起来(模拟 R rbind)
In [177]: rng = pd.date_range("2000-01-01", periods=6)
In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=["A", "B", "C"])
In [179]: df2 = df1.copy()
根据 df 的构建方式,可能需要 ignore_index
In [180]: df = pd.concat([df1, df2], ignore_index=True)
In [181]: df
Out[181]:
A B C
0 -0.870117 -0.479265 -0.790855
1 0.144817 1.726395 -0.464535
2 -0.821906 1.597605 0.187307
3 -0.128342 -1.511638 -0.289858
4 0.399194 -1.430030 -0.639760
5 1.115116 -2.012600 1.810662
6 -0.870117 -0.479265 -0.790855
7 0.144817 1.726395 -0.464535
8 -0.821906 1.597605 0.187307
9 -0.128342 -1.511638 -0.289858
10 0.399194 -1.430030 -0.639760
11 1.115116 -2.012600 1.810662
DataFrame 的自连接 GH 2996
In [182]: df = pd.DataFrame(
.....: data={
.....: "Area": ["A"] * 5 + ["C"] * 2,
.....: "Bins": [110] * 2 + [160] * 3 + [40] * 2,
.....: "Test_0": [0, 1, 0, 1, 2, 0, 1],
.....: "Data": np.random.randn(7),
.....: }
.....: )
.....:
In [183]: df
Out[183]:
Area Bins Test_0 Data
0 A 110 0 -0.433937
1 A 110 1 -0.160552
2 A 160 0 0.744434
3 A 160 1 1.754213
4 A 160 2 0.000850
5 C 40 0 0.342243
6 C 40 1 1.070599
In [184]: df["Test_1"] = df["Test_0"] - 1
In [185]: pd.merge(
.....: df,
.....: df,
.....: left_on=["Bins", "Area", "Test_0"],
.....: right_on=["Bins", "Area", "Test_1"],
.....: suffixes=("_L", "_R"),
.....: )
.....:
Out[185]:
Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.433937 -1 1 -0.160552 0
1 A 160 0 0.744434 -1 1 1.754213 0
2 A 160 1 1.754213 0 2 0.000850 1
3 C 40 0 0.342243 -1 1 1.070599 0
绘图#
The Plotting docs.
使用 Pandas、Vincent 和 xlsxwriter 在 Excel 文件中生成嵌入式图表
In [186]: df = pd.DataFrame(
.....: {
.....: "stratifying_var": np.random.uniform(0, 100, 20),
.....: "price": np.random.normal(100, 5, 20),
.....: }
.....: )
.....:
In [187]: df["quartiles"] = pd.qcut(
.....: df["stratifying_var"], 4, labels=["0-25%", "25-50%", "50-75%", "75-100%"]
.....: )
.....:
In [188]: df.boxplot(column="price", by="quartiles")
Out[188]: <Axes: title={'center': 'price'}, xlabel='quartiles'>
数据输入/输出#
CSV#
The CSV 文档
读取压缩但不是通过 gzip/bz2
(read_csv
理解的原生压缩格式)压缩的文件。此示例展示了一个 WinZipped
文件,但它是一个在上下文管理器中打开文件并使用该句柄进行读取的通用应用程序。 参见此处
处理错误行 GH 2886
读取多个文件以创建单个 DataFrame#
将多个文件合并到单个 DataFrame 的最佳方法是逐个读取各个框架,将所有各个框架放入列表中,然后使用 pd.concat()
将列表中的框架合并。
In [189]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv("file_{}.csv".format(i))
.....:
In [190]: files = ["file_0.csv", "file_1.csv", "file_2.csv"]
In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
您可以使用相同的方法读取所有匹配模式的文件。这是一个使用 glob
的示例
In [192]: import glob
In [193]: import os
In [194]: files = glob.glob("file_*.csv")
In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
最后,此策略将适用于 io 文档 中描述的其他 pd.read_*(...)
函数。
解析多列中的日期组件#
使用格式解析多列中的日期组件速度更快
In [196]: i = pd.date_range("20000101", periods=10000)
In [197]: df = pd.DataFrame({"year": i.year, "month": i.month, "day": i.day})
In [198]: df.head()
Out[198]:
year month day
0 2000 1 1
1 2000 1 2
2 2000 1 3
3 2000 1 4
4 2000 1 5
In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
.....: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1)
.....: ds.head()
.....: %timeit pd.to_datetime(ds)
.....:
3.91 ms +- 565 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
1.08 ms +- 22.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
跳过标题和数据之间的行#
In [200]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m²;°C;m²;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:
选项 1:显式传递行以跳过行#
In [201]: from io import StringIO
In [202]: pd.read_csv(
.....: StringIO(data),
.....: sep=";",
.....: skiprows=[11, 12],
.....: index_col=0,
.....: parse_dates=True,
.....: header=10,
.....: )
.....:
Out[202]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
选项 2:读取列名,然后读取数据#
In [203]: pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')
In [204]: columns = pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
In [205]: pd.read_csv(
.....: StringIO(data), sep=";", index_col=0, header=12, parse_dates=True, names=columns
.....: )
.....:
Out[205]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
SQL#
有关 SQL 的文档
Excel#
有关 Excel 的文档
仅加载可见工作表 GH 19842#issuecomment-892150745
HTML#
HDFStore#
有关 HDFStores 的文档
使用链接的多表层次结构管理异构数据 GH 3032
通过分块对大型存储进行去重,本质上是一个递归缩减操作。展示了一个从 csv 文件中获取数据并通过分块创建存储的函数,并包含日期解析。 参见此处
将属性存储到组节点
In [206]: df = pd.DataFrame(np.random.randn(8, 3))
In [207]: store = pd.HDFStore("test.h5")
In [208]: store.put("df", df)
# you can store an arbitrary Python object via pickle
In [209]: store.get_storer("df").attrs.my_attribute = {"A": 10}
In [210]: store.get_storer("df").attrs.my_attribute
Out[210]: {'A': 10}
可以通过将 driver
参数传递给 PyTables 在内存中创建或加载 HDFStore。只有在关闭 HDFStore 时才会将更改写入磁盘。
In [211]: store = pd.HDFStore("test.h5", "w", driver="H5FD_CORE")
In [212]: df = pd.DataFrame(np.random.randn(8, 3))
In [213]: store["test"] = df
# only after closing the store, data is written to disk:
In [214]: store.close()
二进制文件#
如果您需要读取由 C 结构体数组组成的二进制文件,pandas 可以轻松接受 NumPy 记录数组。例如,给定一个名为 main.c
的 C 程序,使用 gcc main.c -std=gnu99
在 64 位机器上进行编译,
#include <stdio.h>
#include <stdint.h>
typedef struct _Data
{
int32_t count;
double avg;
float scale;
} Data;
int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];
for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}
FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);
return 0;
}
以下 Python 代码将二进制文件 'binary.dat'
读取到 pandas DataFrame
中,其中结构体的每个元素对应于框架中的一列
names = "count", "avg", "scale"
# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = "i4", "f8", "f4"
dt = np.dtype({"names": names, "offsets": offsets, "formats": formats}, align=True)
df = pd.DataFrame(np.fromfile("binary.dat", dt))
注意
结构元素的偏移量可能因创建文件的机器架构而异。不建议将这种原始二进制文件格式用于一般数据存储,因为它不跨平台。我们建议使用 HDF5 或 parquet,它们都受 pandas 的 IO 功能支持。
计算#
相关性#
通常,从 DataFrame.corr()
计算出的相关矩阵中获取下(或上)三角形式很有用。这可以通过将布尔掩码传递给 where
来实现,如下所示
In [215]: df = pd.DataFrame(np.random.random(size=(100, 5)))
In [216]: corr_mat = df.corr()
In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool_), k=-1)
In [218]: corr_mat.where(mask)
Out[218]:
0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 -0.079861 NaN NaN NaN NaN
2 -0.236573 0.183801 NaN NaN NaN
3 -0.013795 -0.051975 0.037235 NaN NaN
4 -0.031974 0.118342 -0.073499 -0.02063 NaN
DataFrame.corr
中的 method
参数除了命名相关类型外,还可以接受可调用对象。这里我们计算 DataFrame
对象的 距离相关性 矩阵。
In [219]: def distcorr(x, y):
.....: n = len(x)
.....: a = np.zeros(shape=(n, n))
.....: b = np.zeros(shape=(n, n))
.....: for i in range(n):
.....: for j in range(i + 1, n):
.....: a[i, j] = abs(x[i] - x[j])
.....: b[i, j] = abs(y[i] - y[j])
.....: a += a.T
.....: b += b.T
.....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
.....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
.....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
.....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
.....: cov_ab = np.sqrt(np.nansum(A * B)) / n
.....: std_a = np.sqrt(np.sqrt(np.nansum(A ** 2)) / n)
.....: std_b = np.sqrt(np.sqrt(np.nansum(B ** 2)) / n)
.....: return cov_ab / std_a / std_b
.....:
In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3)))
In [221]: df.corr(method=distcorr)
Out[221]:
0 1 2
0 1.000000 0.197613 0.216328
1 0.197613 1.000000 0.208749
2 0.216328 0.208749 1.000000
时间增量#
时间增量 文档。
In [222]: import datetime
In [223]: s = pd.Series(pd.date_range("2012-1-1", periods=3, freq="D"))
In [224]: s - s.max()
Out[224]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]
In [225]: s.max() - s
Out[225]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]
In [226]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[226]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]
In [227]: s + datetime.timedelta(minutes=5)
Out[227]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[228]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]
In [229]: datetime.timedelta(minutes=5) + s
Out[229]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])
In [231]: df = pd.DataFrame({"A": s, "B": deltas})
In [232]: df
Out[232]:
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
In [233]: df["New Dates"] = df["A"] + df["B"]
In [234]: df["Delta"] = df["A"] - df["New Dates"]
In [235]: df
Out[235]:
A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days
In [236]: df.dtypes
Out[236]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object
值可以使用 np.nan 设置为 NaT,类似于 datetime
In [237]: y = s - s.shift()
In [238]: y
Out[238]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]
In [239]: y[1] = np.nan
In [240]: y
Out[240]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]
创建示例数据#
要从某些给定值的每种组合创建数据框,就像 R 的 expand.grid()
函数一样,我们可以创建一个字典,其中键是列名,值是数据值的列表
In [241]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:
In [242]: df = expand_grid(
.....: {"height": [60, 70], "weight": [100, 140, 180], "sex": ["Male", "Female"]}
.....: )
.....:
In [243]: df
Out[243]:
height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female
常数序列#
要评估一个序列是否具有恒定值,我们可以检查 series.nunique() <= 1
。但是,一种更有效的方法,它不会首先计算所有唯一值,是
In [244]: v = s.to_numpy()
In [245]: is_constant = v.shape[0] == 0 or (s[0] == s).all()
这种方法假设该序列不包含缺失值。对于我们要删除 NA 值的情况,我们可以简单地先删除这些值
In [246]: v = s.dropna().to_numpy()
In [247]: is_constant = v.shape[0] == 0 or (s[0] == s).all()
如果缺失值被认为与任何其他值不同,那么可以使用
In [248]: v = s.to_numpy()
In [249]: is_constant = v.shape[0] == 0 or (s[0] == s).all() or not pd.notna(v).any()
(请注意,此示例没有区分 np.nan
、pd.NA
和 None
)