基本必备功能#

这里我们讨论 pandas 数据结构共有的许多基本功能。首先,让我们像在 pandas 十分快速入门 章节中一样,创建一些示例对象。

In [1]: index = pd.date_range("1/1/2000", periods=8)

In [2]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=["A", "B", "C"])

Head 和 tail#

要查看 Series 或 DataFrame 对象的小样本,请使用 head()tail() 方法。默认显示元素数量为五个,但您可以传递自定义数量。

In [4]: long_series = pd.Series(np.random.randn(1000))

In [5]: long_series.head()
Out[5]: 
0   -1.157892
1   -1.344312
2    0.844885
3    1.075770
4   -0.109050
dtype: float64

In [6]: long_series.tail(3)
Out[6]: 
997   -0.289388
998   -1.020544
999    0.589993
dtype: float64

属性和底层数据#

pandas 对象具有许多属性,使您能够访问元数据。

  • shape:给出对象的轴维度,与 ndarray 一致

  • 轴标签
    • Series: 索引 (唯一轴)

    • DataFrame: 索引 (行) 和

注意,这些属性可以安全地赋值

In [7]: df[:2]
Out[7]: 
                   A         B         C
2000-01-01 -0.173215  0.119209 -1.044236
2000-01-02 -0.861849 -2.104569 -0.494929

In [8]: df.columns = [x.lower() for x in df.columns]

In [9]: df
Out[9]: 
                   a         b         c
2000-01-01 -0.173215  0.119209 -1.044236
2000-01-02 -0.861849 -2.104569 -0.494929
2000-01-03  1.071804  0.721555 -0.706771
2000-01-04 -1.039575  0.271860 -0.424972
2000-01-05  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427
2000-01-07  0.524988  0.404705  0.577046
2000-01-08 -1.715002 -1.039268 -0.370647

pandas 对象 (Index, Series, DataFrame) 可以被视为数组的容器,这些数组持有实际数据并执行实际计算。对于许多类型,底层数组是一个 numpy.ndarray。然而,pandas 和第三方库可能会 扩展 NumPy 的类型系统以添加对自定义数组的支持 (参见 dtypes)。

要获取 IndexSeries 内部的实际数据,请使用 .array 属性。

In [10]: s.array
Out[10]: 
<NumpyExtensionArray>
[ 0.4691122999071863, -0.2828633443286633, -1.5090585031735124,
 -1.1356323710171934,  1.2121120250208506]
Length: 5, dtype: float64

In [11]: s.index.array
Out[11]: 
<NumpyExtensionArray>
['a', 'b', 'c', 'd', 'e']
Length: 5, dtype: object

array 始终会是一个 ExtensionArray。关于 ExtensionArray 具体是什么以及 pandas 为何使用它们的详细信息,超出本介绍的范围。更多信息请参阅 dtypes

如果您确定需要 NumPy 数组,请使用 to_numpy()numpy.asarray()

In [12]: s.to_numpy()
Out[12]: array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121])

In [13]: np.asarray(s)
Out[13]: array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121])

当 Series 或 Index 由 ExtensionArray 支持时,to_numpy() 可能会涉及复制数据和强制转换值。更多信息请参阅 dtypes

to_numpy() 可以控制结果 numpy.ndarraydtype。例如,考虑带有时区的时间日期。NumPy 没有表示时区感知时间日期的 dtype,因此有两种可能的有用表示形式:

  1. 一个 object-dtype 的 numpy.ndarray,其中包含 Timestamp 对象,每个对象都有正确的 tz

  2. 一个 datetime64[ns] -dtype 的 numpy.ndarray,其中值已转换为 UTC 并丢弃时区

使用 dtype=object 可以保留时区

In [14]: ser = pd.Series(pd.date_range("2000", periods=2, tz="CET"))

In [15]: ser.to_numpy(dtype=object)
Out[15]: 
array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
       Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object)

或者使用 dtype='datetime64[ns]' 丢弃时区

In [16]: ser.to_numpy(dtype="datetime64[ns]")
Out[16]: 
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
      dtype='datetime64[ns]')

获取 DataFrame 内的“原始数据”可能稍微复杂一些。当您的 DataFrame 所有列都只有一种数据类型时,DataFrame.to_numpy() 将返回底层数据。

In [17]: df.to_numpy()
Out[17]: 
array([[-0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949],
       [ 1.0718,  0.7216, -0.7068],
       [-1.0396,  0.2719, -0.425 ],
       [ 0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784],
       [ 0.525 ,  0.4047,  0.577 ],
       [-1.715 , -1.0393, -0.3706]])

如果 DataFrame 包含同构类型数据,则 ndarray 可以原地修改,并且更改将反映在数据结构中。对于异构数据(例如,DataFrame 的某些列的 dtype 不同),则情况并非如此。values 属性本身与轴标签不同,不能被赋值。

注意

在处理异构数据时,结果 ndarray 的 dtype 将被选择以容纳所有涉及的数据。例如,如果涉及字符串,结果将是 object dtype。如果只有浮点数和整数,结果数组将是 float dtype。

过去,pandas 推荐使用 Series.valuesDataFrame.values 来从 Series 或 DataFrame 中提取数据。您仍然会在旧的代码库和网上找到对它们的引用。将来,我们建议避免使用 .values,而是使用 .array.to_numpy().values 具有以下缺点:

  1. 当您的 Series 包含 扩展类型 时,不清楚 Series.values 是返回 NumPy 数组还是扩展数组。Series.array 始终返回 ExtensionArray,并且从不复制数据。Series.to_numpy() 始终返回 NumPy 数组,但可能需要复制/强制转换值。

  2. 当您的 DataFrame 包含混合数据类型时,DataFrame.values 可能涉及复制数据并将值强制转换为公共 dtype,这是一个相对昂贵的操作。DataFrame.to_numpy() 作为一个方法,更清楚地表明返回的 NumPy 数组可能不是 DataFrame 中同一数据的视图。

加速操作#

pandas 支持使用 numexpr 库和 bottleneck 库加速某些类型的二进制数值和布尔操作。

这些库在处理大型数据集时特别有用,并提供大幅加速。numexpr 使用智能分块、缓存和多核。bottleneck 是一组专门的 cython 例程,在处理包含 nans 的数组时特别快。

以下是一个示例(使用 100 列 x 100,000 行的 DataFrames

操作

0.11.0 (毫秒)

之前版本 (毫秒)

相较之前版本的比例

df1 > df2

13.32

125.35

0.1063

df1 * df2

21.71

36.63

0.5928

df1 + df2

22.04

36.50

0.6039

强烈建议您安装这两个库。有关更多安装信息,请参阅 推荐依赖项 章节。

默认情况下,这两个库都已启用,您可以通过设置选项来控制。

pd.set_option("compute.use_bottleneck", False)
pd.set_option("compute.use_numexpr", False)

灵活的二元操作#

对于 pandas 数据结构之间的二元操作,有两个关键点:

  • 高维对象(例如 DataFrame)和低维对象(例如 Series)之间的广播行为。

  • 计算中的缺失数据。

我们将演示如何独立处理这些问题,尽管它们也可以同时处理。

匹配 / 广播行为#

DataFrame 拥有 add(), sub(), mul(), div() 以及相关的函数 radd(), rsub() 等方法来执行二元操作。对于广播行为,Series 输入是主要关注点。使用这些函数,您可以通过 axis 关键字在 索引 上进行匹配。

In [18]: df = pd.DataFrame(
   ....:     {
   ....:         "one": pd.Series(np.random.randn(3), index=["a", "b", "c"]),
   ....:         "two": pd.Series(np.random.randn(4), index=["a", "b", "c", "d"]),
   ....:         "three": pd.Series(np.random.randn(3), index=["b", "c", "d"]),
   ....:     }
   ....: )
   ....: 

In [19]: df
Out[19]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [20]: row = df.iloc[1]

In [21]: column = df["two"]

In [22]: df.sub(row, axis="columns")
Out[22]: 
        one       two     three
a  1.051928 -0.139606       NaN
b  0.000000  0.000000  0.000000
c  0.352192 -0.433754  1.277825
d       NaN -1.632779 -0.562782

In [23]: df.sub(row, axis=1)
Out[23]: 
        one       two     three
a  1.051928 -0.139606       NaN
b  0.000000  0.000000  0.000000
c  0.352192 -0.433754  1.277825
d       NaN -1.632779 -0.562782

In [24]: df.sub(column, axis="index")
Out[24]: 
        one  two     three
a -0.377535  0.0       NaN
b -1.569069  0.0 -1.962513
c -0.783123  0.0 -0.250933
d       NaN  0.0 -0.892516

In [25]: df.sub(column, axis=0)
Out[25]: 
        one  two     three
a -0.377535  0.0       NaN
b -1.569069  0.0 -1.962513
c -0.783123  0.0 -0.250933
d       NaN  0.0 -0.892516

此外,您可以将 MultiIndexed DataFrame 的某个级别与 Series 对齐。

In [26]: dfmi = df.copy()

In [27]: dfmi.index = pd.MultiIndex.from_tuples(
   ....:     [(1, "a"), (1, "b"), (1, "c"), (2, "a")], names=["first", "second"]
   ....: )
   ....: 

In [28]: dfmi.sub(column, axis=0, level="second")
Out[28]: 
                   one       two     three
first second                              
1     a      -0.377535  0.000000       NaN
      b      -1.569069  0.000000 -1.962513
      c      -0.783123  0.000000 -0.250933
2     a            NaN -1.493173 -2.385688

Series 和 Index 也支持内置函数 divmod()。这个函数同时执行整除和取模运算,返回一个与左侧参数类型相同的二元组。例如:

In [29]: s = pd.Series(np.arange(10))

In [30]: s
Out[30]: 
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64

In [31]: div, rem = divmod(s, 3)

In [32]: div
Out[32]: 
0    0
1    0
2    0
3    1
4    1
5    1
6    2
7    2
8    2
9    3
dtype: int64

In [33]: rem
Out[33]: 
0    0
1    1
2    2
3    0
4    1
5    2
6    0
7    1
8    2
9    0
dtype: int64

In [34]: idx = pd.Index(np.arange(10))

In [35]: idx
Out[35]: Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

In [36]: div, rem = divmod(idx, 3)

In [37]: div
Out[37]: Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')

In [38]: rem
Out[38]: Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')

我们也可以执行逐元素的 divmod() 运算。

In [39]: div, rem = divmod(s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])

In [40]: div
Out[40]: 
0    0
1    0
2    0
3    1
4    1
5    1
6    1
7    1
8    1
9    1
dtype: int64

In [41]: rem
Out[41]: 
0    0
1    1
2    2
3    0
4    0
5    1
6    1
7    2
8    2
9    3
dtype: int64

缺失数据 / 带填充值的操作#

在 Series 和 DataFrame 中,算术函数可以选择输入一个 fill_value,即当某个位置最多只有一个值缺失时用来替代该位置的值。例如,在相加两个 DataFrame 对象时,您可能希望将 NaN 视为 0,除非两个 DataFrame在该位置都缺失该值,此时结果将是 NaN(如果需要,您以后可以使用 fillna 将 NaN 替换为其他值)。

In [42]: df2 = df.copy()

In [43]: df2.loc["a", "three"] = 1.0

In [44]: df
Out[44]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [45]: df2
Out[45]: 
        one       two     three
a  1.394981  1.772517  1.000000
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [46]: df + df2
Out[46]: 
        one       two     three
a  2.789963  3.545034       NaN
b  0.686107  3.824246 -0.100780
c  1.390491  2.956737  2.454870
d       NaN  0.558688 -1.226343

In [47]: df.add(df2, fill_value=0)
Out[47]: 
        one       two     three
a  2.789963  3.545034  1.000000
b  0.686107  3.824246 -0.100780
c  1.390491  2.956737  2.454870
d       NaN  0.558688 -1.226343

灵活的比较#

Series 和 DataFrame 拥有二元比较方法 eq, ne, lt, gt, lege,其行为类似于上面描述的二元算术操作。

In [48]: df.gt(df2)
Out[48]: 
     one    two  three
a  False  False  False
b  False  False  False
c  False  False  False
d  False  False  False

In [49]: df2.ne(df)
Out[49]: 
     one    two  three
a  False  False   True
b  False  False  False
c  False  False  False
d   True  False  False

这些操作产生一个与左侧输入同类型的 pandas 对象,其 dtype 为 bool。这些 boolean 对象可用于索引操作,详情请参阅关于 布尔索引 的章节。

布尔归约#

您可以应用归约方法:empty, any(), all()bool(),以提供一种总结布尔结果的方式。

In [50]: (df > 0).all()
Out[50]: 
one      False
two       True
three    False
dtype: bool

In [51]: (df > 0).any()
Out[51]: 
one      True
two      True
three    True
dtype: bool

您可以归约到一个最终的布尔值。

In [52]: (df > 0).any().any()
Out[52]: True

您可以通过 empty 属性测试 pandas 对象是否为空。

In [53]: df.empty
Out[53]: False

In [54]: pd.DataFrame(columns=list("ABC")).empty
Out[54]: True

警告

断言 pandas 对象的真值性会引发错误,因为测试其是否为空或其值是模棱两可的。

In [55]: if df:
   ....:     print(True)
   ....: 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-55-318d08b2571a> in ?()
----> 1 if df:
      2     print(True)

~/work/pandas/pandas/pandas/core/generic.py in ?(self)
   1575     @final
   1576     def __nonzero__(self) -> NoReturn:
-> 1577         raise ValueError(
   1578             f"The truth value of a {type(self).__name__} is ambiguous. "
   1579             "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
   1580         )

ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
In [56]: df and df2
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-56-b241b64bb471> in ?()
----> 1 df and df2

~/work/pandas/pandas/pandas/core/generic.py in ?(self)
   1575     @final
   1576     def __nonzero__(self) -> NoReturn:
-> 1577         raise ValueError(
   1578             f"The truth value of a {type(self).__name__} is ambiguous. "
   1579             "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
   1580         )

ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

有关更详细的讨论,请参阅 易错点

比较对象是否等价#

您经常会发现计算同一结果有多种方法。举个简单的例子,考虑 df + dfdf * 2。为了测试这两个计算是否产生相同结果,根据上面展示的工具,您可能会想到使用 (df + df == df * 2).all()。但实际上,这个表达式是 False。

In [57]: df + df == df * 2
Out[57]: 
     one   two  three
a   True  True  False
b   True  True   True
c   True  True   True
d  False  True   True

In [58]: (df + df == df * 2).all()
Out[58]: 
one      False
two       True
three    False
dtype: bool

注意到布尔 DataFrame df + df == df * 2 包含一些 False 值!这是因为 NaN 不会被比较为相等。

In [59]: np.nan == np.nan
Out[59]: False

因此,NDFrames(如 Series 和 DataFrame)有一个 equals() 方法用于测试相等性,其中对应位置的 NaN 被视为相等。

In [60]: (df + df).equals(df * 2)
Out[60]: True

请注意,Series 或 DataFrame 的索引必须按相同顺序排列,相等性才为 True。

In [61]: df1 = pd.DataFrame({"col": ["foo", 0, np.nan]})

In [62]: df2 = pd.DataFrame({"col": [np.nan, 0, "foo"]}, index=[2, 1, 0])

In [63]: df1.equals(df2)
Out[63]: False

In [64]: df1.equals(df2.sort_index())
Out[64]: True

比较类数组对象#

在将 pandas 数据结构与标量值进行比较时,您可以方便地执行逐元素比较。

In [65]: pd.Series(["foo", "bar", "baz"]) == "foo"
Out[65]: 
0     True
1    False
2    False
dtype: bool

In [66]: pd.Index(["foo", "bar", "baz"]) == "foo"
Out[66]: array([ True, False, False])

pandas 还处理相同长度的不同类数组对象之间的逐元素比较。

In [67]: pd.Series(["foo", "bar", "baz"]) == pd.Index(["foo", "bar", "qux"])
Out[67]: 
0     True
1     True
2    False
dtype: bool

In [68]: pd.Series(["foo", "bar", "baz"]) == np.array(["foo", "bar", "qux"])
Out[68]: 
0     True
1     True
2    False
dtype: bool

尝试比较不同长度的 IndexSeries 对象将引发 ValueError。

In [69]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[69], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])

File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
     72             return NotImplemented
     74 other = item_from_zerodim(other)
---> 76 return method(self, other)

File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
     38 @unpack_zerodim_and_defer("__eq__")
     39 def __eq__(self, other):
---> 40     return self._cmp_method(other, operator.eq)

File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
   6111 res_name = ops.get_op_result_name(self, other)
   6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114     raise ValueError("Can only compare identically-labeled Series objects")
   6116 lvalues = self._values
   6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)

ValueError: Can only compare identically-labeled Series objects

In [70]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[70], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])

File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
     72             return NotImplemented
     74 other = item_from_zerodim(other)
---> 76 return method(self, other)

File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
     38 @unpack_zerodim_and_defer("__eq__")
     39 def __eq__(self, other):
---> 40     return self._cmp_method(other, operator.eq)

File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
   6111 res_name = ops.get_op_result_name(self, other)
   6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114     raise ValueError("Can only compare identically-labeled Series objects")
   6116 lvalues = self._values
   6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)

ValueError: Can only compare identically-labeled Series objects

合并重叠数据集#

一个偶尔出现的问题是合并两个相似的数据集,其中一个数据集中的值优先于另一个数据集。一个例子是两个表示特定经济指标的数据序列,其中一个被认为是“更高质量”的。然而,质量较低的系列可能追溯到更远的过去或具有更完整的数据覆盖。因此,我们希望合并两个 DataFrame 对象,其中一个 DataFrame 中的缺失值有条件地用另一个 DataFrame 中相同标签的值填充。实现此操作的函数是 combine_first(),我们在此进行说明。

In [71]: df1 = pd.DataFrame(
   ....:     {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
   ....: )
   ....: 

In [72]: df2 = pd.DataFrame(
   ....:     {
   ....:         "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
   ....:         "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
   ....:     }
   ....: )
   ....: 

In [73]: df1
Out[73]: 
     A    B
0  1.0  NaN
1  NaN  2.0
2  3.0  3.0
3  5.0  NaN
4  NaN  6.0

In [74]: df2
Out[74]: 
     A    B
0  5.0  NaN
1  2.0  NaN
2  4.0  3.0
3  NaN  4.0
4  3.0  6.0
5  7.0  8.0

In [75]: df1.combine_first(df2)
Out[75]: 
     A    B
0  1.0  NaN
1  2.0  2.0
2  3.0  3.0
3  5.0  4.0
4  3.0  6.0
5  7.0  8.0

通用 DataFrame 合并#

上述 combine_first() 方法调用了更通用的 DataFrame.combine()。此方法接受另一个 DataFrame 和一个合并函数,对齐输入的 DataFrame,然后将成对的 Series(即名称相同的列)传递给合并函数。

因此,例如,要重现上述的 combine_first()

In [76]: def combiner(x, y):
   ....:     return np.where(pd.isna(x), y, x)
   ....: 

In [77]: df1.combine(df2, combiner)
Out[77]: 
     A    B
0  1.0  NaN
1  2.0  2.0
2  3.0  3.0
3  5.0  4.0
4  3.0  6.0
5  7.0  8.0

描述性统计#

有大量用于计算 Series, DataFrame 的描述性统计量和其他相关操作的方法。其中大多数是聚合(因此产生一个低维结果),例如 sum(), mean()quantile(),但其中一些,例如 cumsum()cumprod(),产生大小相同的对象。一般来说,这些方法接受一个 axis 参数,就像 ndarray.{sum, std, …} 一样,但轴可以按名称或整数指定。

  • Series: 不需要 axis 参数

  • DataFrame: “index” (axis=0, 默认), “columns” (axis=1)

例如

In [78]: df
Out[78]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [79]: df.mean(0)
Out[79]: 
one      0.811094
two      1.360588
three    0.187958
dtype: float64

In [80]: df.mean(1)
Out[80]: 
a    1.583749
b    0.734929
c    1.133683
d   -0.166914
dtype: float64

所有这些方法都有一个 skipna 选项,指示是否排除缺失数据(默认为 True)。

In [81]: df.sum(0, skipna=False)
Out[81]: 
one           NaN
two      5.442353
three         NaN
dtype: float64

In [82]: df.sum(axis=1, skipna=True)
Out[82]: 
a    3.167498
b    2.204786
c    3.401050
d   -0.333828
dtype: float64

结合广播/算术行为,可以非常简洁地描述各种统计过程,例如标准化(使数据具有零均值和标准差为 1)。

In [83]: ts_stand = (df - df.mean()) / df.std()

In [84]: ts_stand.std()
Out[84]: 
one      1.0
two      1.0
three    1.0
dtype: float64

In [85]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)

In [86]: xs_stand.std(1)
Out[86]: 
a    1.0
b    1.0
c    1.0
d    1.0
dtype: float64

请注意,像 cumsum()cumprod() 这样的方法会保留 NaN 值的位置。这与 expanding()rolling() 有所不同,因为 NaN 的行为还由 min_periods 参数决定。

In [87]: df.cumsum()
Out[87]: 
        one       two     three
a  1.394981  1.772517       NaN
b  1.738035  3.684640 -0.050390
c  2.433281  5.163008  1.177045
d       NaN  5.442353  0.563873

下面是常用函数的快速参考摘要表。每个函数还接受一个可选的 level 参数,该参数仅在对象具有 分层索引 时应用。

函数

描述

count

非 NA 观测值的数量

sum

值的总和

mean

值的平均值

median

值的算术中位数

min

最小值

max

最大值

mode

众数

abs

绝对值

prod

值的乘积

std

贝塞尔校正样本标准差

var

无偏方差

sem

均值标准误差

skew

样本偏度(三阶矩)

kurt

样本峰度(四阶矩)

quantile

样本分位数(位于 % 的值)

cumsum

累积总和

cumprod

累积乘积

cummax

累积最大值

cummin

累积最小值

请注意,碰巧一些 NumPy 方法,如 meanstdsum,默认在 Series 输入时会排除 NA。

In [88]: np.mean(df["one"])
Out[88]: 0.8110935116651192

In [89]: np.mean(df["one"].to_numpy())
Out[89]: nan

Series.nunique() 将返回 Series 中唯一非 NA 值的数量。

In [90]: series = pd.Series(np.random.randn(500))

In [91]: series[20:500] = np.nan

In [92]: series[10:20] = 5

In [93]: series.nunique()
Out[93]: 11

汇总数据:describe#

有一个方便的 describe() 函数,它计算 Series 或 DataFrame 列的各种汇总统计信息(当然不包括 NA)。

In [94]: series = pd.Series(np.random.randn(1000))

In [95]: series[::2] = np.nan

In [96]: series.describe()
Out[96]: 
count    500.000000
mean      -0.021292
std        1.015906
min       -2.683763
25%       -0.699070
50%       -0.069718
75%        0.714483
max        3.160915
dtype: float64

In [97]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])

In [98]: frame.iloc[::2] = np.nan

In [99]: frame.describe()
Out[99]: 
                a           b           c           d           e
count  500.000000  500.000000  500.000000  500.000000  500.000000
mean     0.033387    0.030045   -0.043719   -0.051686    0.005979
std      1.017152    0.978743    1.025270    1.015988    1.006695
min     -3.000951   -2.637901   -3.303099   -3.159200   -3.188821
25%     -0.647623   -0.576449   -0.712369   -0.691338   -0.691115
50%      0.047578   -0.021499   -0.023888   -0.032652   -0.025363
75%      0.729907    0.775880    0.618896    0.670047    0.649748
max      2.740139    2.752332    3.004229    2.728702    3.240991

您可以选择输出中包含特定的分位数。

In [100]: series.describe(percentiles=[0.05, 0.25, 0.75, 0.95])
Out[100]: 
count    500.000000
mean      -0.021292
std        1.015906
min       -2.683763
5%        -1.645423
25%       -0.699070
50%       -0.069718
75%        0.714483
95%        1.711409
max        3.160915
dtype: float64

默认情况下,中位数始终包含在内。

对于非数值型的 Series 对象,describe() 将提供唯一值数量和最常出现值的简单汇总。

In [101]: s = pd.Series(["a", "a", "b", "b", "a", "a", np.nan, "c", "d", "a"])

In [102]: s.describe()
Out[102]: 
count     9
unique    4
top       a
freq      5
dtype: object

请注意,对于混合类型的 DataFrame 对象,describe() 会将汇总限制为仅包含数值列,如果没有任何数值列,则仅包含分类列。

In [103]: frame = pd.DataFrame({"a": ["Yes", "Yes", "No", "No"], "b": range(4)})

In [104]: frame.describe()
Out[104]: 
              b
count  4.000000
mean   1.500000
std    1.290994
min    0.000000
25%    0.750000
50%    1.500000
75%    2.250000
max    3.000000

可以通过提供类型列表作为 include/exclude 参数来控制此行为。也可以使用特殊值 all

In [105]: frame.describe(include=["object"])
Out[105]: 
          a
count     4
unique    2
top     Yes
freq      2

In [106]: frame.describe(include=["number"])
Out[106]: 
              b
count  4.000000
mean   1.500000
std    1.290994
min    0.000000
25%    0.750000
50%    1.500000
75%    2.250000
max    3.000000

In [107]: frame.describe(include="all")
Out[107]: 
          a         b
count     4  4.000000
unique    2       NaN
top     Yes       NaN
freq      2       NaN
mean    NaN  1.500000
std     NaN  1.290994
min     NaN  0.000000
25%     NaN  0.750000
50%     NaN  1.500000
75%     NaN  2.250000
max     NaN  3.000000

该功能依赖于 select_dtypes。有关接受输入的详细信息,请参阅该处。

最小/最大值的索引#

Series 和 DataFrame 上的 idxmin()idxmax() 函数计算具有最小和最大对应值的索引标签。

In [108]: s1 = pd.Series(np.random.randn(5))

In [109]: s1
Out[109]: 
0    1.118076
1   -0.352051
2   -1.242883
3   -1.277155
4   -0.641184
dtype: float64

In [110]: s1.idxmin(), s1.idxmax()
Out[110]: (3, 0)

In [111]: df1 = pd.DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])

In [112]: df1
Out[112]: 
          A         B         C
0 -0.327863 -0.946180 -0.137570
1 -0.186235 -0.257213 -0.486567
2 -0.507027 -0.871259 -0.111110
3  2.000339 -2.430505  0.089759
4 -0.321434 -0.033695  0.096271

In [113]: df1.idxmin(axis=0)
Out[113]: 
A    2
B    3
C    1
dtype: int64

In [114]: df1.idxmax(axis=1)
Out[114]: 
0    C
1    A
2    C
3    A
4    C
dtype: object

当存在多行(或多列)与最小值或最大值匹配时,idxmin()idxmax() 返回第一个匹配的索引。

In [115]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=["A"], index=list("edcba"))

In [116]: df3
Out[116]: 
     A
e  2.0
d  1.0
c  1.0
b  3.0
a  NaN

In [117]: df3["A"].idxmin()
Out[117]: 'd'

注意

idxminidxmax 在 NumPy 中被称为 argminargmax

值计数(直方图)/ 众数#

value_counts() 是 Series 的一个方法,用于计算一维值数组的直方图。它也可以作为常规数组上的函数使用。

In [118]: data = np.random.randint(0, 7, size=50)

In [119]: data
Out[119]: 
array([6, 6, 2, 3, 5, 3, 2, 5, 4, 5, 4, 3, 4, 5, 0, 2, 0, 4, 2, 0, 3, 2,
       2, 5, 6, 5, 3, 4, 6, 4, 3, 5, 6, 4, 3, 6, 2, 6, 6, 2, 3, 4, 2, 1,
       6, 2, 6, 1, 5, 4])

In [120]: s = pd.Series(data)

In [121]: s.value_counts()
Out[121]: 
6    10
2    10
4     9
3     8
5     8
0     3
1     2
Name: count, dtype: int64

The value_counts() 方法可以用来计算多列组合的计数。默认情况下使用所有列,但可以使用 subset 参数选择子集。

In [122]: data = {"a": [1, 2, 3, 4], "b": ["x", "x", "y", "y"]}

In [123]: frame = pd.DataFrame(data)

In [124]: frame.value_counts()
Out[124]: 
a  b
1  x    1
2  x    1
3  y    1
4  y    1
Name: count, dtype: int64

类似地,您可以获取 Series 或 DataFrame 中最常出现的值(即众数)。

In [125]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [126]: s5.mode()
Out[126]: 
0    3
1    7
dtype: int64

In [127]: df5 = pd.DataFrame(
   .....:     {
   .....:         "A": np.random.randint(0, 7, size=50),
   .....:         "B": np.random.randint(-10, 15, size=50),
   .....:     }
   .....: )
   .....: 

In [128]: df5.mode()
Out[128]: 
     A   B
0  1.0  -9
1  NaN  10
2  NaN  13

离散化和分位数化#

可以使用 cut()(基于值的分箱)和 qcut()(基于样本分位数的分箱)函数对连续值进行离散化。

In [129]: arr = np.random.randn(20)

In [130]: factor = pd.cut(arr, 4)

In [131]: factor
Out[131]: 
[(-0.251, 0.464], (-0.968, -0.251], (0.464, 1.179], (-0.251, 0.464], (-0.968, -0.251], ..., (-0.251, 0.464], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251]]
Length: 20
Categories (4, interval[float64, right]): [(-0.968, -0.251] < (-0.251, 0.464] < (0.464, 1.179] <
                                           (1.179, 1.893]]

In [132]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])

In [133]: factor
Out[133]: 
[(0, 1], (-1, 0], (0, 1], (0, 1], (-1, 0], ..., (-1, 0], (-1, 0], (-1, 0], (-1, 0], (-1, 0]]
Length: 20
Categories (4, interval[int64, right]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() 计算样本分位数。例如,我们可以将一些正态分布的数据切分成等大小的四分位数,如下所示:

In [134]: arr = np.random.randn(30)

In [135]: factor = pd.qcut(arr, [0, 0.25, 0.5, 0.75, 1])

In [136]: factor
Out[136]: 
[(0.569, 1.184], (-2.278, -0.301], (-2.278, -0.301], (0.569, 1.184], (0.569, 1.184], ..., (-0.301, 0.569], (1.184, 2.346], (1.184, 2.346], (-0.301, 0.569], (-2.278, -0.301]]
Length: 30
Categories (4, interval[float64, right]): [(-2.278, -0.301] < (-0.301, 0.569] < (0.569, 1.184] <
                                           (1.184, 2.346]]

我们还可以传递无穷大值来定义分箱。

In [137]: arr = np.random.randn(20)

In [138]: factor = pd.cut(arr, [-np.inf, 0, np.inf])

In [139]: factor
Out[139]: 
[(-inf, 0.0], (0.0, inf], (0.0, inf], (-inf, 0.0], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0], (-inf, 0.0], (0.0, inf], (0.0, inf]]
Length: 20
Categories (2, interval[float64, right]): [(-inf, 0.0] < (0.0, inf]]

函数应用#

要将您自己或另一个库的函数应用于 pandas 对象,您应该了解以下三种方法。使用哪种方法取决于您的函数是期望作用于整个 DataFrameSeries,还是按行或按列,抑或逐元素进行。

  1. 表格级函数应用: pipe()

  2. 按行或按列的函数应用: apply()

  3. 聚合API: agg()transform()

  4. 应用逐元素函数: map()

表格级函数应用#

DataFramesSeries 可以传递给函数。然而,如果函数需要在链式调用中被调用,请考虑使用 pipe() 方法。

首先进行一些设置

In [140]: def extract_city_name(df):
   .....:     """
   .....:     Chicago, IL -> Chicago for city_name column
   .....:     """
   .....:     df["city_name"] = df["city_and_code"].str.split(",").str.get(0)
   .....:     return df
   .....: 

In [141]: def add_country_name(df, country_name=None):
   .....:     """
   .....:     Chicago -> Chicago-US for city_name column
   .....:     """
   .....:     col = "city_name"
   .....:     df["city_and_country"] = df[col] + country_name
   .....:     return df
   .....: 

In [142]: df_p = pd.DataFrame({"city_and_code": ["Chicago, IL"]})

extract_city_nameadd_country_name 是接受并返回 DataFrames 的函数。

现在比较以下内容

In [143]: add_country_name(extract_city_name(df_p), country_name="US")
Out[143]: 
  city_and_code city_name city_and_country
0   Chicago, IL   Chicago        ChicagoUS

等价于

In [144]: df_p.pipe(extract_city_name).pipe(add_country_name, country_name="US")
Out[144]: 
  city_and_code city_name city_and_country
0   Chicago, IL   Chicago        ChicagoUS

pandas 鼓励第二种风格,这被称为方法链 (method chaining)。pipe 使得在你自己的或另一个库的函数与 pandas 的方法一起使用时,在方法链中轻松使用它们。

在上面的例子中,函数 extract_city_nameadd_country_name 都期望将 DataFrame 作为第一个位置参数。如果你希望应用的函数将数据作为(例如)第二个参数,该怎么办?在这种情况下,向 pipe 提供一个元组 (callable, data_keyword).pipe 将把 DataFrame 路由到元组中指定的参数。

例如,我们可以使用 statsmodels 拟合回归模型。它们的 API 首先期望一个公式,然后是 DataFrame 作为第二个参数,即 data。我们将函数和关键词对 (sm.ols, 'data') 传递给 pipe

In [147]: import statsmodels.formula.api as sm

In [148]: bb = pd.read_csv("data/baseball.csv", index_col="id")

In [149]: (
   .....:     bb.query("h > 0")
   .....:     .assign(ln_h=lambda df: np.log(df.h))
   .....:     .pipe((sm.ols, "data"), "hr ~ ln_h + year + g + C(lg)")
   .....:     .fit()
   .....:     .summary()
   .....: )
   .....:
Out[149]:
<class 'statsmodels.iolib.summary.Summary'>
"""
                           OLS Regression Results
==============================================================================
Dep. Variable:                     hr   R-squared:                       0.685
Model:                            OLS   Adj. R-squared:                  0.665
Method:                 Least Squares   F-statistic:                     34.28
Date:                Tue, 22 Nov 2022   Prob (F-statistic):           3.48e-15
Time:                        05:34:17   Log-Likelihood:                -205.92
No. Observations:                  68   AIC:                             421.8
Df Residuals:                      63   BIC:                             432.9
Df Model:                           4
Covariance Type:            nonrobust
===============================================================================
                  coef    std err          t      P>|t|      [0.025      0.975]
-------------------------------------------------------------------------------
Intercept   -8484.7720   4664.146     -1.819      0.074   -1.78e+04     835.780
C(lg)[T.NL]    -2.2736      1.325     -1.716      0.091      -4.922       0.375
ln_h           -1.3542      0.875     -1.547      0.127      -3.103       0.395
year            4.2277      2.324      1.819      0.074      -0.417       8.872
g               0.1841      0.029      6.258      0.000       0.125       0.243
==============================================================================
Omnibus:                       10.875   Durbin-Watson:                   1.999
Prob(Omnibus):                  0.004   Jarque-Bera (JB):               17.298
Skew:                           0.537   Prob(JB):                     0.000175
Kurtosis:                       5.225   Cond. No.                     1.49e+07
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.49e+07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""

pipe 方法的灵感来自 unix pipes 以及最近的 dplyrmagrittr,它们为 R 引入了流行的 (%>%)(读作 pipe)运算符。pipe 在这里的实现非常简洁,并且在 Python 中感觉很自然。我们鼓励您查看 pipe() 的源代码。

按行或按列的函数应用#

可以使用 apply() 方法沿 DataFrame 的轴应用任意函数,该方法与描述性统计方法一样,接受一个可选的 axis 参数。

In [145]: df.apply(lambda x: np.mean(x))
Out[145]: 
one      0.811094
two      1.360588
three    0.187958
dtype: float64

In [146]: df.apply(lambda x: np.mean(x), axis=1)
Out[146]: 
a    1.583749
b    0.734929
c    1.133683
d   -0.166914
dtype: float64

In [147]: df.apply(lambda x: x.max() - x.min())
Out[147]: 
one      1.051928
two      1.632779
three    1.840607
dtype: float64

In [148]: df.apply(np.cumsum)
Out[148]: 
        one       two     three
a  1.394981  1.772517       NaN
b  1.738035  3.684640 -0.050390
c  2.433281  5.163008  1.177045
d       NaN  5.442353  0.563873

In [149]: df.apply(np.exp)
Out[149]: 
        one       two     three
a  4.034899  5.885648       NaN
b  1.409244  6.767440  0.950858
c  2.004201  4.385785  3.412466
d       NaN  1.322262  0.541630

apply() 方法也可以通过字符串方法名称进行分派。

In [150]: df.apply("mean")
Out[150]: 
one      0.811094
two      1.360588
three    0.187958
dtype: float64

In [151]: df.apply("mean", axis=1)
Out[151]: 
a    1.583749
b    0.734929
c    1.133683
d   -0.166914
dtype: float64

传递给 apply() 的函数的返回类型会影响 DataFrame.apply 的最终输出类型(对于默认行为)。

  • 如果应用的函数返回一个 Series,则最终输出是一个 DataFrame。列名与应用的函数返回的 Series 的索引匹配。

  • 如果应用的函数返回任何其他类型,则最终输出是一个 Series

可以使用 result_type 参数覆盖此默认行为,该参数接受三个选项:reducebroadcastexpand。这些选项决定了类列表返回值如何扩展(或不扩展)为 DataFrame

apply() 结合一些巧妙的方法可以用于回答关于数据集的许多问题。例如,假设我们想提取每列出现最大值的日期。

In [152]: tsdf = pd.DataFrame(
   .....:     np.random.randn(1000, 3),
   .....:     columns=["A", "B", "C"],
   .....:     index=pd.date_range("1/1/2000", periods=1000),
   .....: )
   .....: 

In [153]: tsdf.apply(lambda x: x.idxmax())
Out[153]: 
A   2000-08-06
B   2001-01-18
C   2001-07-18
dtype: datetime64[ns]

你还可以向 apply() 方法传递额外的参数和关键词参数。

In [154]: def subtract_and_divide(x, sub, divide=1):
   .....:     return (x - sub) / divide
   .....: 

In [155]: df_udf = pd.DataFrame(np.ones((2, 2)))

In [156]: df_udf.apply(subtract_and_divide, args=(5,), divide=3)
Out[156]: 
          0         1
0 -1.333333 -1.333333
1 -1.333333 -1.333333

另一个有用的特性是能够传递 Series 方法来对每一列或每一行执行一些 Series 操作。

In [157]: tsdf = pd.DataFrame(
   .....:     np.random.randn(10, 3),
   .....:     columns=["A", "B", "C"],
   .....:     index=pd.date_range("1/1/2000", periods=10),
   .....: )
   .....: 

In [158]: tsdf.iloc[3:7] = np.nan

In [159]: tsdf
Out[159]: 
                   A         B         C
2000-01-01 -0.158131 -0.232466  0.321604
2000-01-02 -1.810340 -3.105758  0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08 -0.653602  0.178875  1.008298
2000-01-09  1.007996  0.462824  0.254472
2000-01-10  0.307473  0.600337  1.643950

In [160]: tsdf.apply(pd.Series.interpolate)
Out[160]: 
                   A         B         C
2000-01-01 -0.158131 -0.232466  0.321604
2000-01-02 -1.810340 -3.105758  0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 -1.098598 -0.889659  0.092225
2000-01-05 -0.987349 -0.622526  0.321243
2000-01-06 -0.876100 -0.355392  0.550262
2000-01-07 -0.764851 -0.088259  0.779280
2000-01-08 -0.653602  0.178875  1.008298
2000-01-09  1.007996  0.462824  0.254472
2000-01-10  0.307473  0.600337  1.643950

最后,apply() 接受一个参数 raw,其默认值为 False,它会在应用函数之前将每一行或每一列转换为一个 Series。当设置为 True 时,传递的函数将改为接收一个 ndarray 对象,如果你不需要索引功能,这将对性能产生积极影响。

聚合API#

聚合 API 允许以简洁的方式表达可能的多个聚合操作。此 API 在 pandas 对象之间是相似的,参见 groupby APIwindow APIresample API。聚合的入口点是 DataFrame.aggregate(),或其别名 DataFrame.agg()

我们将使用上面类似的起始 DataFrame

In [161]: tsdf = pd.DataFrame(
   .....:     np.random.randn(10, 3),
   .....:     columns=["A", "B", "C"],
   .....:     index=pd.date_range("1/1/2000", periods=10),
   .....: )
   .....: 

In [162]: tsdf.iloc[3:7] = np.nan

In [163]: tsdf
Out[163]: 
                   A         B         C
2000-01-01  1.257606  1.004194  0.167574
2000-01-02 -0.749892  0.288112 -0.757304
2000-01-03 -0.207550 -0.298599  0.116018
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.814347 -0.257623  0.869226
2000-01-09 -0.250663 -1.206601  0.896839
2000-01-10  2.169758 -1.333363  0.283157

使用单个函数等效于 apply()。你也可以将命名方法作为字符串传递。这些将返回聚合输出的 Series

In [164]: tsdf.agg(lambda x: np.sum(x))
Out[164]: 
A    3.033606
B   -1.803879
C    1.575510
dtype: float64

In [165]: tsdf.agg("sum")
Out[165]: 
A    3.033606
B   -1.803879
C    1.575510
dtype: float64

# these are equivalent to a ``.sum()`` because we are aggregating
# on a single function
In [166]: tsdf.sum()
Out[166]: 
A    3.033606
B   -1.803879
C    1.575510
dtype: float64

Series 进行单个聚合将返回一个标量值。

In [167]: tsdf["A"].agg("sum")
Out[167]: 3.033606102414146

使用多个函数进行聚合#

你可以将多个聚合参数作为列表传递。每个传递的函数的结果将作为结果 DataFrame 中的一行。这些行名自然来源于聚合函数。

In [168]: tsdf.agg(["sum"])
Out[168]: 
            A         B        C
sum  3.033606 -1.803879  1.57551

多个函数产生多行

In [169]: tsdf.agg(["sum", "mean"])
Out[169]: 
             A         B         C
sum   3.033606 -1.803879  1.575510
mean  0.505601 -0.300647  0.262585

Series 应用多个函数将返回一个 Series,其索引由函数名称构成。

In [170]: tsdf["A"].agg(["sum", "mean"])
Out[170]: 
sum     3.033606
mean    0.505601
Name: A, dtype: float64

传递一个 lambda 函数将产生一个名为 <lambda> 的行。

In [171]: tsdf["A"].agg(["sum", lambda x: x.mean()])
Out[171]: 
sum         3.033606
<lambda>    0.505601
Name: A, dtype: float64

传递一个命名函数将为行产生该名称。

In [172]: def mymean(x):
   .....:     return x.mean()
   .....: 

In [173]: tsdf["A"].agg(["sum", mymean])
Out[173]: 
sum       3.033606
mymean    0.505601
Name: A, dtype: float64

使用字典进行聚合#

DataFrame.agg 传递一个列名到标量或标量列表的字典,可以自定义将哪些函数应用于哪些列。请注意,结果没有特定的顺序,你可以改用 OrderedDict 来保证顺序。

In [174]: tsdf.agg({"A": "mean", "B": "sum"})
Out[174]: 
A    0.505601
B   -1.803879
dtype: float64

传递一个类列表将生成一个 DataFrame 输出。你将获得一个包含所有聚合器的矩阵状输出。输出将包含所有唯一的函数。对于特定列未注明的函数将显示为 NaN

In [175]: tsdf.agg({"A": ["mean", "min"], "B": "sum"})
Out[175]: 
             A         B
mean  0.505601       NaN
min  -0.749892       NaN
sum        NaN -1.803879

自定义 describe#

使用 .agg() 可以轻松创建一个自定义的 describe 函数,类似于内置的 describe 函数

In [176]: from functools import partial

In [177]: q_25 = partial(pd.Series.quantile, q=0.25)

In [178]: q_25.__name__ = "25%"

In [179]: q_75 = partial(pd.Series.quantile, q=0.75)

In [180]: q_75.__name__ = "75%"

In [181]: tsdf.agg(["count", "mean", "std", "min", q_25, "median", q_75, "max"])
Out[181]: 
               A         B         C
count   6.000000  6.000000  6.000000
mean    0.505601 -0.300647  0.262585
std     1.103362  0.887508  0.606860
min    -0.749892 -1.333363 -0.757304
25%    -0.239885 -0.979600  0.128907
median  0.303398 -0.278111  0.225365
75%     1.146791  0.151678  0.722709
max     2.169758  1.004194  0.896839

Transform API#

transform() 方法返回一个索引与原始对象相同(大小相同)的对象。此 API 允许你一次提供 *多个* 操作,而不是逐个执行。其 API 与 .agg API 非常相似。

我们创建一个与上面章节中使用的类似的 DataFrame。

In [182]: tsdf = pd.DataFrame(
   .....:     np.random.randn(10, 3),
   .....:     columns=["A", "B", "C"],
   .....:     index=pd.date_range("1/1/2000", periods=10),
   .....: )
   .....: 

In [183]: tsdf.iloc[3:7] = np.nan

In [184]: tsdf
Out[184]: 
                   A         B         C
2000-01-01 -0.428759 -0.864890 -0.675341
2000-01-02 -0.168731  1.338144 -1.279321
2000-01-03 -1.621034  0.438107  0.903794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374 -1.240447 -0.201052
2000-01-09 -0.157795  0.791197 -1.144209
2000-01-10 -0.030876  0.371900  0.061932

转换整个 DataFrame。.transform() 允许的输入函数类型包括:NumPy 函数、字符串函数名或用户自定义函数。

In [185]: tsdf.transform(np.abs)
Out[185]: 
                   A         B         C
2000-01-01  0.428759  0.864890  0.675341
2000-01-02  0.168731  1.338144  1.279321
2000-01-03  1.621034  0.438107  0.903794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374  1.240447  0.201052
2000-01-09  0.157795  0.791197  1.144209
2000-01-10  0.030876  0.371900  0.061932

In [186]: tsdf.transform("abs")
Out[186]: 
                   A         B         C
2000-01-01  0.428759  0.864890  0.675341
2000-01-02  0.168731  1.338144  1.279321
2000-01-03  1.621034  0.438107  0.903794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374  1.240447  0.201052
2000-01-09  0.157795  0.791197  1.144209
2000-01-10  0.030876  0.371900  0.061932

In [187]: tsdf.transform(lambda x: x.abs())
Out[187]: 
                   A         B         C
2000-01-01  0.428759  0.864890  0.675341
2000-01-02  0.168731  1.338144  1.279321
2000-01-03  1.621034  0.438107  0.903794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374  1.240447  0.201052
2000-01-09  0.157795  0.791197  1.144209
2000-01-10  0.030876  0.371900  0.061932

这里 transform() 接收了一个单个函数;这等同于 ufunc 应用。

In [188]: np.abs(tsdf)
Out[188]: 
                   A         B         C
2000-01-01  0.428759  0.864890  0.675341
2000-01-02  0.168731  1.338144  1.279321
2000-01-03  1.621034  0.438107  0.903794
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374  1.240447  0.201052
2000-01-09  0.157795  0.791197  1.144209
2000-01-10  0.030876  0.371900  0.061932

将单个函数传递给 .transform() 应用于 Series 将返回一个单个的 Series

In [189]: tsdf["A"].transform(np.abs)
Out[189]: 
2000-01-01    0.428759
2000-01-02    0.168731
2000-01-03    1.621034
2000-01-04         NaN
2000-01-05         NaN
2000-01-06         NaN
2000-01-07         NaN
2000-01-08    0.254374
2000-01-09    0.157795
2000-01-10    0.030876
Freq: D, Name: A, dtype: float64

使用多个函数进行转换#

传递多个函数将生成一个列为 MultiIndex 的 DataFrame。第一层将是原始 DataFrame 的列名;第二层将是转换函数的名称。

In [190]: tsdf.transform([np.abs, lambda x: x + 1])
Out[190]: 
                   A                   B                   C          
            absolute  <lambda>  absolute  <lambda>  absolute  <lambda>
2000-01-01  0.428759  0.571241  0.864890  0.135110  0.675341  0.324659
2000-01-02  0.168731  0.831269  1.338144  2.338144  1.279321 -0.279321
2000-01-03  1.621034 -0.621034  0.438107  1.438107  0.903794  1.903794
2000-01-04       NaN       NaN       NaN       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN       NaN       NaN       NaN
2000-01-08  0.254374  1.254374  1.240447 -0.240447  0.201052  0.798948
2000-01-09  0.157795  0.842205  0.791197  1.791197  1.144209 -0.144209
2000-01-10  0.030876  0.969124  0.371900  1.371900  0.061932  1.061932

将多个函数传递给 Series 将生成一个 DataFrame。结果 DataFrame 的列名将是转换函数。

In [191]: tsdf["A"].transform([np.abs, lambda x: x + 1])
Out[191]: 
            absolute  <lambda>
2000-01-01  0.428759  0.571241
2000-01-02  0.168731  0.831269
2000-01-03  1.621034 -0.621034
2000-01-04       NaN       NaN
2000-01-05       NaN       NaN
2000-01-06       NaN       NaN
2000-01-07       NaN       NaN
2000-01-08  0.254374  1.254374
2000-01-09  0.157795  0.842205
2000-01-10  0.030876  0.969124

使用字典进行转换#

传递一个函数字典将允许对每列进行选择性转换。

In [192]: tsdf.transform({"A": np.abs, "B": lambda x: x + 1})
Out[192]: 
                   A         B
2000-01-01  0.428759  0.135110
2000-01-02  0.168731  2.338144
2000-01-03  1.621034  1.438107
2000-01-04       NaN       NaN
2000-01-05       NaN       NaN
2000-01-06       NaN       NaN
2000-01-07       NaN       NaN
2000-01-08  0.254374 -0.240447
2000-01-09  0.157795  1.791197
2000-01-10  0.030876  1.371900

传递一个列表字典将生成一个具有这些选择性转换的 MultiIndexed DataFrame。

In [193]: tsdf.transform({"A": np.abs, "B": [lambda x: x + 1, "sqrt"]})
Out[193]: 
                   A         B          
            absolute  <lambda>      sqrt
2000-01-01  0.428759  0.135110       NaN
2000-01-02  0.168731  2.338144  1.156782
2000-01-03  1.621034  1.438107  0.661897
2000-01-04       NaN       NaN       NaN
2000-01-05       NaN       NaN       NaN
2000-01-06       NaN       NaN       NaN
2000-01-07       NaN       NaN       NaN
2000-01-08  0.254374 -0.240447       NaN
2000-01-09  0.157795  1.791197  0.889493
2000-01-10  0.030876  1.371900  0.609836

应用逐元素函数#

由于并非所有函数都可以向量化(接受 NumPy 数组并返回另一个数组或值),因此 DataFrame 上的 map() 方法以及 Series 上类似的 map() 方法接受任何接受单个值并返回单个值的 Python 函数。例如:

In [194]: df4 = df.copy()

In [195]: df4
Out[195]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [196]: def f(x):
   .....:     return len(str(x))
   .....: 

In [197]: df4["one"].map(f)
Out[197]: 
a    18
b    19
c    18
d     3
Name: one, dtype: int64

In [198]: df4.map(f)
Out[198]: 
   one  two  three
a   18   17      3
b   19   18     20
c   18   18     16
d    3   19     19

Series.map() 还有一个额外的特性;它可用于轻松“链接”或“映射”由辅助 Series 定义的值。这与 合并/连接功能 密切相关。

In [199]: s = pd.Series(
   .....:     ["six", "seven", "six", "seven", "six"], index=["a", "b", "c", "d", "e"]
   .....: )
   .....: 

In [200]: t = pd.Series({"six": 6.0, "seven": 7.0})

In [201]: s
Out[201]: 
a      six
b    seven
c      six
d    seven
e      six
dtype: object

In [202]: s.map(t)
Out[202]: 
a    6.0
b    7.0
c    6.0
d    7.0
e    6.0
dtype: float64

重新索引和修改标签#

reindex() 是 pandas 中基本的数据对齐方法。它用于实现几乎所有依赖于标签对齐功能的其他特性。reindex 的意思是使数据符合沿特定轴给定的一组标签。这可以实现几个目的:

  • 重新排序现有数据以匹配一组新标签

  • 在不存在该标签数据的位置插入缺失值(NA)标记

  • 如果指定,使用逻辑填充缺失标签的数据(与时间序列数据处理高度相关)

这是一个简单的例子

In [203]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

In [204]: s
Out[204]: 
a    1.695148
b    1.328614
c    1.234686
d   -0.385845
e   -1.326508
dtype: float64

In [205]: s.reindex(["e", "b", "f", "d"])
Out[205]: 
e   -1.326508
b    1.328614
f         NaN
d   -0.385845
dtype: float64

在这里,标签 f 不包含在 Series 中,因此在结果中显示为 NaN

对于 DataFrame,你可以同时重新索引索引和列。

In [206]: df
Out[206]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [207]: df.reindex(index=["c", "f", "b"], columns=["three", "two", "one"])
Out[207]: 
      three       two       one
c  1.227435  1.478369  0.695246
f       NaN       NaN       NaN
b -0.050390  1.912123  0.343054

请注意,包含实际轴标签的 Index 对象可以在对象之间共享。因此,如果我们有一个 Series 和一个 DataFrame,可以执行以下操作:

In [208]: rs = s.reindex(df.index)

In [209]: rs
Out[209]: 
a    1.695148
b    1.328614
c    1.234686
d   -0.385845
dtype: float64

In [210]: rs.index is df.index
Out[210]: True

这意味着重新索引后的 Series 的索引与 DataFrame 的索引是同一个 Python 对象。

DataFrame.reindex() 也支持“轴样式”调用约定,即你指定一个单独的 labels 参数和它适用的 axis

In [211]: df.reindex(["c", "f", "b"], axis="index")
Out[211]: 
        one       two     three
c  0.695246  1.478369  1.227435
f       NaN       NaN       NaN
b  0.343054  1.912123 -0.050390

In [212]: df.reindex(["three", "two", "one"], axis="columns")
Out[212]: 
      three       two       one
a       NaN  1.772517  1.394981
b -0.050390  1.912123  0.343054
c  1.227435  1.478369  0.695246
d -0.613172  0.279344       NaN

另见

MultiIndex / 高级索引 是一种更简洁的重新索引方式。

注意

在编写对性能敏感的代码时,花一些时间成为重新索引的专家是有充分理由的:许多操作在预对齐的数据上速度更快。添加两个未对齐的 DataFrame 内部会触发重新索引步骤。对于探索性分析,你几乎不会注意到差异(因为 reindex 已经过高度优化),但当 CPU 周期很重要时,在代码中少量添加显式的 reindex 调用可能会产生影响。

重新索引以与另一个对象对齐#

你可能希望将一个对象的轴重新索引,使其标签与另一个对象相同。虽然这样做的语法直观但可能冗长,但这是一个足够常见的操作,因此提供了 reindex_like() 方法来简化此操作。

In [213]: df2 = df.reindex(["a", "b", "c"], columns=["one", "two"])

In [214]: df3 = df2 - df2.mean()

In [215]: df2
Out[215]: 
        one       two
a  1.394981  1.772517
b  0.343054  1.912123
c  0.695246  1.478369

In [216]: df3
Out[216]: 
        one       two
a  0.583888  0.051514
b -0.468040  0.191120
c -0.115848 -0.242634

In [217]: df.reindex_like(df2)
Out[217]: 
        one       two
a  1.394981  1.772517
b  0.343054  1.912123
c  0.695246  1.478369

使用 align 使对象相互对齐#

align() 方法是同时对齐两个对象的最快方法。它支持一个 join 参数(与 连接和合并 相关):

  • join='outer':取索引的并集(默认)

  • join='left':使用调用对象的索引

  • join='right':使用传递对象的索引

  • join='inner':取索引的交集

它返回一个包含两个重新索引后的 Series 的元组。

In [218]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

In [219]: s1 = s[:4]

In [220]: s2 = s[1:]

In [221]: s1.align(s2)
Out[221]: 
(a   -0.186646
 b   -1.692424
 c   -0.303893
 d   -1.425662
 e         NaN
 dtype: float64,
 a         NaN
 b   -1.692424
 c   -0.303893
 d   -1.425662
 e    1.114285
 dtype: float64)

In [222]: s1.align(s2, join="inner")
Out[222]: 
(b   -1.692424
 c   -0.303893
 d   -1.425662
 dtype: float64,
 b   -1.692424
 c   -0.303893
 d   -1.425662
 dtype: float64)

In [223]: s1.align(s2, join="left")
Out[223]: 
(a   -0.186646
 b   -1.692424
 c   -0.303893
 d   -1.425662
 dtype: float64,
 a         NaN
 b   -1.692424
 c   -0.303893
 d   -1.425662
 dtype: float64)

对于 DataFrames,join 方法默认应用于索引和列。

In [224]: df.align(df2, join="inner")
Out[224]: 
(        one       two
 a  1.394981  1.772517
 b  0.343054  1.912123
 c  0.695246  1.478369,
         one       two
 a  1.394981  1.772517
 b  0.343054  1.912123
 c  0.695246  1.478369)

你还可以传递一个 axis 选项,仅沿指定的轴进行对齐。

In [225]: df.align(df2, join="inner", axis=0)
Out[225]: 
(        one       two     three
 a  1.394981  1.772517       NaN
 b  0.343054  1.912123 -0.050390
 c  0.695246  1.478369  1.227435,
         one       two
 a  1.394981  1.772517
 b  0.343054  1.912123
 c  0.695246  1.478369)

如果你向 DataFrame.align() 传递一个 Series,你可以使用 axis 参数选择在 DataFrame 的索引或列上对齐两个对象。

In [226]: df.align(df2.iloc[0], axis=1)
Out[226]: 
(        one     three       two
 a  1.394981       NaN  1.772517
 b  0.343054 -0.050390  1.912123
 c  0.695246  1.227435  1.478369
 d       NaN -0.613172  0.279344,
 one      1.394981
 three         NaN
 two      1.772517
 Name: a, dtype: float64)

重新索引时进行填充#

reindex() 接受一个可选参数 method,这是一个从下表中选择的填充方法。

方法

行为

pad / ffill

向前填充值

bfill / backfill

向后填充值

nearest

从最近的索引值填充

我们在一个简单的 Series 上演示这些填充方法。

In [227]: rng = pd.date_range("1/3/2000", periods=8)

In [228]: ts = pd.Series(np.random.randn(8), index=rng)

In [229]: ts2 = ts.iloc[[0, 3, 6]]

In [230]: ts
Out[230]: 
2000-01-03    0.183051
2000-01-04    0.400528
2000-01-05   -0.015083
2000-01-06    2.395489
2000-01-07    1.414806
2000-01-08    0.118428
2000-01-09    0.733639
2000-01-10   -0.936077
Freq: D, dtype: float64

In [231]: ts2
Out[231]: 
2000-01-03    0.183051
2000-01-06    2.395489
2000-01-09    0.733639
Freq: 3D, dtype: float64

In [232]: ts2.reindex(ts.index)
Out[232]: 
2000-01-03    0.183051
2000-01-04         NaN
2000-01-05         NaN
2000-01-06    2.395489
2000-01-07         NaN
2000-01-08         NaN
2000-01-09    0.733639
2000-01-10         NaN
Freq: D, dtype: float64

In [233]: ts2.reindex(ts.index, method="ffill")
Out[233]: 
2000-01-03    0.183051
2000-01-04    0.183051
2000-01-05    0.183051
2000-01-06    2.395489
2000-01-07    2.395489
2000-01-08    2.395489
2000-01-09    0.733639
2000-01-10    0.733639
Freq: D, dtype: float64

In [234]: ts2.reindex(ts.index, method="bfill")
Out[234]: 
2000-01-03    0.183051
2000-01-04    2.395489
2000-01-05    2.395489
2000-01-06    2.395489
2000-01-07    0.733639
2000-01-08    0.733639
2000-01-09    0.733639
2000-01-10         NaN
Freq: D, dtype: float64

In [235]: ts2.reindex(ts.index, method="nearest")
Out[235]: 
2000-01-03    0.183051
2000-01-04    0.183051
2000-01-05    2.395489
2000-01-06    2.395489
2000-01-07    2.395489
2000-01-08    0.733639
2000-01-09    0.733639
2000-01-10    0.733639
Freq: D, dtype: float64

这些方法要求索引按递增或递减排序

请注意,使用 ffill(除了 method='nearest')或 interpolate 也可以获得相同的结果。

In [236]: ts2.reindex(ts.index).ffill()
Out[236]: 
2000-01-03    0.183051
2000-01-04    0.183051
2000-01-05    0.183051
2000-01-06    2.395489
2000-01-07    2.395489
2000-01-08    2.395489
2000-01-09    0.733639
2000-01-10    0.733639
Freq: D, dtype: float64

reindex() 将在索引非单调递增或递减时引发 ValueError。fillna()interpolate() 不会对索引的顺序进行任何检查。

重新索引时填充的限制#

limittolerance 参数提供了重新索引时填充的额外控制。Limit 指定连续匹配的最大数量。

In [237]: ts2.reindex(ts.index, method="ffill", limit=1)
Out[237]: 
2000-01-03    0.183051
2000-01-04    0.183051
2000-01-05         NaN
2000-01-06    2.395489
2000-01-07    2.395489
2000-01-08         NaN
2000-01-09    0.733639
2000-01-10    0.733639
Freq: D, dtype: float64

相比之下,tolerance 指定索引和索引器值之间的最大距离。

In [238]: ts2.reindex(ts.index, method="ffill", tolerance="1 day")
Out[238]: 
2000-01-03    0.183051
2000-01-04    0.183051
2000-01-05         NaN
2000-01-06    2.395489
2000-01-07    2.395489
2000-01-08         NaN
2000-01-09    0.733639
2000-01-10    0.733639
Freq: D, dtype: float64

注意,当用于 DatetimeIndexTimedeltaIndexPeriodIndex 时,如果可能,tolerance 将被强制转换为 Timedelta。这允许你使用适当的字符串指定 tolerance。

从轴中删除标签#

reindex 密切相关的一个方法是 drop() 函数。它从轴中移除一组标签。

In [239]: df
Out[239]: 
        one       two     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [240]: df.drop(["a", "d"], axis=0)
Out[240]: 
        one       two     three
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435

In [241]: df.drop(["one"], axis=1)
Out[241]: 
        two     three
a  1.772517       NaN
b  1.912123 -0.050390
c  1.478369  1.227435
d  0.279344 -0.613172

请注意,以下方法也有效,但不够直观/简洁。

In [242]: df.reindex(df.index.difference(["a", "d"]))
Out[242]: 
        one       two     three
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435

重命名 / 映射标签#

rename() 方法允许你根据一些映射(字典或 Series)或任意函数重新标记轴。

In [243]: s
Out[243]: 
a   -0.186646
b   -1.692424
c   -0.303893
d   -1.425662
e    1.114285
dtype: float64

In [244]: s.rename(str.upper)
Out[244]: 
A   -0.186646
B   -1.692424
C   -0.303893
D   -1.425662
E    1.114285
dtype: float64

如果你传递一个函数,它在用任何标签调用时必须返回一个值(并且必须产生一组唯一值)。也可以使用字典或 Series。

In [245]: df.rename(
   .....:     columns={"one": "foo", "two": "bar"},
   .....:     index={"a": "apple", "b": "banana", "d": "durian"},
   .....: )
   .....: 
Out[245]: 
             foo       bar     three
apple   1.394981  1.772517       NaN
banana  0.343054  1.912123 -0.050390
c       0.695246  1.478369  1.227435
durian       NaN  0.279344 -0.613172

如果映射不包含列/索引标签,则不会重命名。请注意,映射中的额外标签不会引发错误。

DataFrame.rename() 也支持“轴样式”调用约定,即你指定一个单独的 mapper 和应用该映射的 axis

In [246]: df.rename({"one": "foo", "two": "bar"}, axis="columns")
Out[246]: 
        foo       bar     three
a  1.394981  1.772517       NaN
b  0.343054  1.912123 -0.050390
c  0.695246  1.478369  1.227435
d       NaN  0.279344 -0.613172

In [247]: df.rename({"a": "apple", "b": "banana", "d": "durian"}, axis="index")
Out[247]: 
             one       two     three
apple   1.394981  1.772517       NaN
banana  0.343054  1.912123 -0.050390
c       0.695246  1.478369  1.227435
durian       NaN  0.279344 -0.613172

最后,rename() 也接受标量或类列表来修改 Series.name 属性。

In [248]: s.rename("scalar-name")
Out[248]: 
a   -0.186646
b   -1.692424
c   -0.303893
d   -1.425662
e    1.114285
Name: scalar-name, dtype: float64

DataFrame.rename_axis()Series.rename_axis() 方法允许更改 MultiIndex 的特定名称(与标签不同)。

In [249]: df = pd.DataFrame(
   .....:     {"x": [1, 2, 3, 4, 5, 6], "y": [10, 20, 30, 40, 50, 60]},
   .....:     index=pd.MultiIndex.from_product(
   .....:         [["a", "b", "c"], [1, 2]], names=["let", "num"]
   .....:     ),
   .....: )
   .....: 

In [250]: df
Out[250]: 
         x   y
let num       
a   1    1  10
    2    2  20
b   1    3  30
    2    4  40
c   1    5  50
    2    6  60

In [251]: df.rename_axis(index={"let": "abc"})
Out[251]: 
         x   y
abc num       
a   1    1  10
    2    2  20
b   1    3  30
    2    4  40
c   1    5  50
    2    6  60

In [252]: df.rename_axis(index=str.upper)
Out[252]: 
         x   y
LET NUM       
a   1    1  10
    2    2  20
b   1    3  30
    2    4  40
c   1    5  50
    2    6  60

迭代#

对 pandas 对象进行基本迭代的行为取决于类型。迭代 Series 时,它被视为类数组对象,基本迭代产生值。DataFrames 遵循类似字典的约定,迭代对象的“键”。

简而言之,基本迭代(for i in object)产生:

  • Series:值

  • DataFrame:列标签

因此,例如,迭代 DataFrame 会得到列名。

In [253]: df = pd.DataFrame(
   .....:     {"col1": np.random.randn(3), "col2": np.random.randn(3)}, index=["a", "b", "c"]
   .....: )
   .....: 

In [254]: for col in df:
   .....:     print(col)
   .....: 
col1
col2

pandas 对象还具有类似字典的 items() 方法,用于迭代 (key, value) 对。

要迭代 DataFrame 的行,可以使用以下方法:

  • iterrows():将 DataFrame 的行作为 (索引, Series) 对进行迭代。这将行转换为 Series 对象,这可能会改变数据类型 (dtypes) 并对性能产生一定影响。

  • itertuples():将 DataFrame 的行作为值的 namedtuples 进行迭代。这比 iterrows() 快得多,并且在大多数情况下更适合用于迭代 DataFrame 的值。

警告

迭代 pandas 对象通常是慢的。在许多情况下,手动迭代行是不必要的,可以通过以下方法之一避免:

  • 寻找向量化解决方案:许多操作可以使用内置方法或 NumPy 函数、(布尔) 索引等执行。

  • 当你的函数不能一次处理完整的 DataFrame/Series 时,最好使用 apply() 而不是迭代值。参见关于 函数应用 的文档。

  • 如果你需要对值进行迭代操作但性能很重要,考虑使用 cython 或 numba 编写内部循环。参见 提高性能 部分以获取此方法的示例。

警告

绝不应该修改你正在迭代的对象。这不能保证在所有情况下都有效。根据数据类型的不同,迭代器返回的是副本而不是视图,并且写入它不会产生任何效果!

例如,在以下情况下设置值没有效果。

In [255]: df = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})

In [256]: for index, row in df.iterrows():
   .....:     row["a"] = 10
   .....: 

In [257]: df
Out[257]: 
   a  b
0  1  a
1  2  b
2  3  c

items#

与类字典接口一致,items() 遍历键值对。

  • Series:(索引, 标量值) 对

  • DataFrame:(列, Series) 对

例如

In [258]: for label, ser in df.items():
   .....:     print(label)
   .....:     print(ser)
   .....: 
a
0    1
1    2
2    3
Name: a, dtype: int64
b
0    a
1    b
2    c
Name: b, dtype: object

iterrows#

iterrows() 允许你将 DataFrame 的行作为 Series 对象进行迭代。它返回一个迭代器,生成每个索引值以及包含每行数据的 Series。

In [259]: for row_index, row in df.iterrows():
   .....:     print(row_index, row, sep="\n")
   .....: 
0
a    1
b    a
Name: 0, dtype: object
1
a    2
b    b
Name: 1, dtype: object
2
a    3
b    c
Name: 2, dtype: object

注意

因为 iterrows() 为每一行返回一个 Series,它会保留行之间的数据类型 (dtypes)(对于 DataFrames,数据类型在列之间保留)。例如,

In [260]: df_orig = pd.DataFrame([[1, 1.5]], columns=["int", "float"])

In [261]: df_orig.dtypes
Out[261]: 
int        int64
float    float64
dtype: object

In [262]: row = next(df_orig.iterrows())[1]

In [263]: row
Out[263]: 
int      1.0
float    1.5
Name: 0, dtype: float64

row 中的所有值,作为 Series 返回,现在都向上转换为浮点数,包括列 x 中的原始整数值。

In [264]: row["int"].dtype
Out[264]: dtype('float64')

In [265]: df_orig["int"].dtype
Out[265]: dtype('int64')

为了在迭代行时保留数据类型,最好使用 itertuples(),它返回值的 namedtuples,并且通常比 iterrows() 快得多。

例如,一种巧妙地转置 DataFrame 的方法是:

In [266]: df2 = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})

In [267]: print(df2)
   x  y
0  1  4
1  2  5
2  3  6

In [268]: print(df2.T)
   0  1  2
x  1  2  3
y  4  5  6

In [269]: df2_t = pd.DataFrame({idx: values for idx, values in df2.iterrows()})

In [270]: print(df2_t)
   0  1  2
x  1  2  3
y  4  5  6

itertuples#

itertuples() 方法将返回一个迭代器,为 DataFrame 中的每一行生成一个 namedtuple。元组的第一个元素将是行对应的索引值,而其余的值是行的值。

例如

In [271]: for row in df.itertuples():
   .....:     print(row)
   .....: 
Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')

此方法不会将行转换为 Series 对象;它只返回 namedtuple 内的值。因此,itertuples() 保留了值的原始数据类型,并且通常比 iterrows() 快得多。

注意

如果列名是无效的 Python 标识符、重复的或者以下划线开头,它们将被重命名为位置名称。当列数较多 (>255) 时,返回的是普通元组。

.dt 访问器#

Series 有一个访问器,可以简洁地返回 Series 的类日期时间属性,前提它是日期时间/周期类 Series。这将返回一个 Series,其索引与现有 Series 相同。

# datetime
In [272]: s = pd.Series(pd.date_range("20130101 09:10:12", periods=4))

In [273]: s
Out[273]: 
0   2013-01-01 09:10:12
1   2013-01-02 09:10:12
2   2013-01-03 09:10:12
3   2013-01-04 09:10:12
dtype: datetime64[ns]

In [274]: s.dt.hour
Out[274]: 
0    9
1    9
2    9
3    9
dtype: int32

In [275]: s.dt.second
Out[275]: 
0    12
1    12
2    12
3    12
dtype: int32

In [276]: s.dt.day
Out[276]: 
0    1
1    2
2    3
3    4
dtype: int32

这使得可以写出如下简洁的表达式:

In [277]: s[s.dt.day == 2]
Out[277]: 
1   2013-01-02 09:10:12
dtype: datetime64[ns]

你可以轻松生成时区感知转换。

In [278]: stz = s.dt.tz_localize("US/Eastern")

In [279]: stz
Out[279]: 
0   2013-01-01 09:10:12-05:00
1   2013-01-02 09:10:12-05:00
2   2013-01-03 09:10:12-05:00
3   2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]

In [280]: stz.dt.tz
Out[280]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

你还可以链式调用这些操作。

In [281]: s.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
Out[281]: 
0   2013-01-01 04:10:12-05:00
1   2013-01-02 04:10:12-05:00
2   2013-01-03 04:10:12-05:00
3   2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]

你还可以使用 Series.dt.strftime() 将日期时间值格式化为字符串,它支持与标准 strftime() 相同的格式。

# DatetimeIndex
In [282]: s = pd.Series(pd.date_range("20130101", periods=4))

In [283]: s
Out[283]: 
0   2013-01-01
1   2013-01-02
2   2013-01-03
3   2013-01-04
dtype: datetime64[ns]

In [284]: s.dt.strftime("%Y/%m/%d")
Out[284]: 
0    2013/01/01
1    2013/01/02
2    2013/01/03
3    2013/01/04
dtype: object
# PeriodIndex
In [285]: s = pd.Series(pd.period_range("20130101", periods=4))

In [286]: s
Out[286]: 
0    2013-01-01
1    2013-01-02
2    2013-01-03
3    2013-01-04
dtype: period[D]

In [287]: s.dt.strftime("%Y/%m/%d")
Out[287]: 
0    2013/01/01
1    2013/01/02
2    2013/01/03
3    2013/01/04
dtype: object

.dt 访问器适用于 period 和 timedelta 数据类型。

# period
In [288]: s = pd.Series(pd.period_range("20130101", periods=4, freq="D"))

In [289]: s
Out[289]: 
0    2013-01-01
1    2013-01-02
2    2013-01-03
3    2013-01-04
dtype: period[D]

In [290]: s.dt.year
Out[290]: 
0    2013
1    2013
2    2013
3    2013
dtype: int64

In [291]: s.dt.day
Out[291]: 
0    1
1    2
2    3
3    4
dtype: int64
# timedelta
In [292]: s = pd.Series(pd.timedelta_range("1 day 00:00:05", periods=4, freq="s"))

In [293]: s
Out[293]: 
0   1 days 00:00:05
1   1 days 00:00:06
2   1 days 00:00:07
3   1 days 00:00:08
dtype: timedelta64[ns]

In [294]: s.dt.days
Out[294]: 
0    1
1    1
2    1
3    1
dtype: int64

In [295]: s.dt.seconds
Out[295]: 
0    5
1    6
2    7
3    8
dtype: int32

In [296]: s.dt.components
Out[296]: 
   days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds
0     1      0        0        5             0             0            0
1     1      0        0        6             0             0            0
2     1      0        0        7             0             0            0
3     1      0        0        8             0             0            0

注意

如果使用非日期时间类型的值进行访问,Series.dt 将引发 TypeError

向量化字符串方法#

Series 配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作。也许最重要的是,这些方法会自动排除缺失值/NA 值。这些方法通过 Series 的 str 属性访问,并且名称通常与等效的(标量)内置字符串方法匹配。例如:

In [297]: s = pd.Series(
   .....:     ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
   .....: )
   .....: 

In [298]: s.str.lower()
Out[298]: 
0       a
1       b
2       c
3    aaba
4    baca
5    <NA>
6    caba
7     dog
8     cat
dtype: string

还提供了强大的模式匹配方法,但请注意,模式匹配通常默认使用(在某些情况下始终使用)正则表达式

注意

在 pandas 1.0 之前,字符串方法仅适用于 object -dtype 的 Series。pandas 1.0 添加了专用于字符串的 StringDtype。更多信息请参阅 文本数据类型

请参阅 向量化字符串方法 以获取完整描述。

排序#

pandas 支持三种排序:按索引标签排序、按列值排序以及按两者的组合排序。

按索引#

Series.sort_index()DataFrame.sort_index() 方法用于按其索引级别对 pandas 对象进行排序。

In [299]: df = pd.DataFrame(
   .....:     {
   .....:         "one": pd.Series(np.random.randn(3), index=["a", "b", "c"]),
   .....:         "two": pd.Series(np.random.randn(4), index=["a", "b", "c", "d"]),
   .....:         "three": pd.Series(np.random.randn(3), index=["b", "c", "d"]),
   .....:     }
   .....: )
   .....: 

In [300]: unsorted_df = df.reindex(
   .....:     index=["a", "d", "c", "b"], columns=["three", "two", "one"]
   .....: )
   .....: 

In [301]: unsorted_df
Out[301]: 
      three       two       one
a       NaN -1.152244  0.562973
d -0.252916 -0.109597       NaN
c  1.273388 -0.167123  0.640382
b -0.098217  0.009797 -1.299504

# DataFrame
In [302]: unsorted_df.sort_index()
Out[302]: 
      three       two       one
a       NaN -1.152244  0.562973
b -0.098217  0.009797 -1.299504
c  1.273388 -0.167123  0.640382
d -0.252916 -0.109597       NaN

In [303]: unsorted_df.sort_index(ascending=False)
Out[303]: 
      three       two       one
d -0.252916 -0.109597       NaN
c  1.273388 -0.167123  0.640382
b -0.098217  0.009797 -1.299504
a       NaN -1.152244  0.562973

In [304]: unsorted_df.sort_index(axis=1)
Out[304]: 
        one     three       two
a  0.562973       NaN -1.152244
d       NaN -0.252916 -0.109597
c  0.640382  1.273388 -0.167123
b -1.299504 -0.098217  0.009797

# Series
In [305]: unsorted_df["three"].sort_index()
Out[305]: 
a         NaN
b   -0.098217
c    1.273388
d   -0.252916
Name: three, dtype: float64

按索引排序也支持一个 key 参数,该参数接受一个可调用函数,用于应用于正在排序的索引。对于 MultiIndex 对象,该 key 会按级别应用于由 level 指定的级别。

In [306]: s1 = pd.DataFrame({"a": ["B", "a", "C"], "b": [1, 2, 3], "c": [2, 3, 4]}).set_index(
   .....:     list("ab")
   .....: )
   .....: 

In [307]: s1
Out[307]: 
     c
a b   
B 1  2
a 2  3
C 3  4
In [308]: s1.sort_index(level="a")
Out[308]: 
     c
a b   
B 1  2
C 3  4
a 2  3

In [309]: s1.sort_index(level="a", key=lambda idx: idx.str.lower())
Out[309]: 
     c
a b   
a 2  3
B 1  2
C 3  4

有关按值进行 key 排序的信息,请参阅 按值排序

按值#

Series.sort_values() 方法用于按其值对 Series 进行排序。DataFrame.sort_values() 方法用于按其列或行值对 DataFrame 进行排序。DataFrame.sort_values() 可选的 by 参数可用于指定一个或多个列,以确定排序顺序。

In [310]: df1 = pd.DataFrame(
   .....:     {"one": [2, 1, 1, 1], "two": [1, 3, 2, 4], "three": [5, 4, 3, 2]}
   .....: )
   .....: 

In [311]: df1.sort_values(by="two")
Out[311]: 
   one  two  three
0    2    1      5
2    1    2      3
1    1    3      4
3    1    4      2

by 参数可以接受一个列名列表,例如:

In [312]: df1[["one", "two", "three"]].sort_values(by=["one", "two"])
Out[312]: 
   one  two  three
2    1    2      3
1    1    3      4
3    1    4      2
0    2    1      5

这些方法通过 na_position 参数对 NA 值进行特殊处理。

In [313]: s[2] = np.nan

In [314]: s.sort_values()
Out[314]: 
0       A
3    Aaba
1       B
4    Baca
6    CABA
8     cat
7     dog
2    <NA>
5    <NA>
dtype: string

In [315]: s.sort_values(na_position="first")
Out[315]: 
2    <NA>
5    <NA>
0       A
3    Aaba
1       B
4    Baca
6    CABA
8     cat
7     dog
dtype: string

排序还支持一个 key 参数,该参数接受一个可调用函数,用于应用于正在排序的值。

In [316]: s1 = pd.Series(["B", "a", "C"])
In [317]: s1.sort_values()
Out[317]: 
0    B
2    C
1    a
dtype: object

In [318]: s1.sort_values(key=lambda x: x.str.lower())
Out[318]: 
1    a
0    B
2    C
dtype: object

key 将接收到值的 Series,并应返回一个具有相同形状的 Series 或数组,其中包含转换后的值。对于 DataFrame 对象,key 按列应用,因此 key 仍应期望接收一个 Series 并返回一个 Series,例如:

In [319]: df = pd.DataFrame({"a": ["B", "a", "C"], "b": [1, 2, 3]})
In [320]: df.sort_values(by="a")
Out[320]: 
   a  b
0  B  1
2  C  3
1  a  2

In [321]: df.sort_values(by="a", key=lambda col: col.str.lower())
Out[321]: 
   a  b
1  a  2
0  B  1
2  C  3

可以使用每列的名称或类型来对不同的列应用不同的函数。

按索引和值#

传递给 DataFrame.sort_values()by 参数的字符串可以引用列名或索引级别名称。

# Build MultiIndex
In [322]: idx = pd.MultiIndex.from_tuples(
   .....:     [("a", 1), ("a", 2), ("a", 2), ("b", 2), ("b", 1), ("b", 1)]
   .....: )
   .....: 

In [323]: idx.names = ["first", "second"]

# Build DataFrame
In [324]: df_multi = pd.DataFrame({"A": np.arange(6, 0, -1)}, index=idx)

In [325]: df_multi
Out[325]: 
              A
first second   
a     1       6
      2       5
      2       4
b     2       3
      1       2
      1       1

按“second”(索引)和“A”(列)排序

In [326]: df_multi.sort_values(by=["second", "A"])
Out[326]: 
              A
first second   
b     1       1
      1       2
a     1       6
b     2       3
a     2       4
      2       5

注意

如果一个字符串同时匹配列名和索引级别名称,则会发出警告,并且列名优先。在未来版本中,这将导致歧义错误。

searchsorted#

Series 具有 searchsorted() 方法,其工作原理类似于 numpy.ndarray.searchsorted()

In [327]: ser = pd.Series([1, 2, 3])

In [328]: ser.searchsorted([0, 3])
Out[328]: array([0, 2])

In [329]: ser.searchsorted([0, 4])
Out[329]: array([0, 3])

In [330]: ser.searchsorted([1, 3], side="right")
Out[330]: array([1, 3])

In [331]: ser.searchsorted([1, 3], side="left")
Out[331]: array([0, 2])

In [332]: ser = pd.Series([3, 1, 2])

In [333]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[333]: array([0, 2])

最小/最大值#

Series 具有 nsmallest()nlargest() 方法,它们返回最小或最大的 \(n\) 个值。对于大型 Series,这比对整个 Series 进行排序并对结果调用 head(n) 快得多。

In [334]: s = pd.Series(np.random.permutation(10))

In [335]: s
Out[335]: 
0    2
1    0
2    3
3    7
4    1
5    5
6    9
7    6
8    8
9    4
dtype: int64

In [336]: s.sort_values()
Out[336]: 
1    0
4    1
0    2
2    3
9    4
5    5
7    6
3    7
8    8
6    9
dtype: int64

In [337]: s.nsmallest(3)
Out[337]: 
1    0
4    1
0    2
dtype: int64

In [338]: s.nlargest(3)
Out[338]: 
6    9
8    8
3    7
dtype: int64

DataFrame 也具有 nlargestnsmallest 方法。

In [339]: df = pd.DataFrame(
   .....:     {
   .....:         "a": [-2, -1, 1, 10, 8, 11, -1],
   .....:         "b": list("abdceff"),
   .....:         "c": [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0],
   .....:     }
   .....: )
   .....: 

In [340]: df.nlargest(3, "a")
Out[340]: 
    a  b    c
5  11  f  3.0
3  10  c  3.2
4   8  e  NaN

In [341]: df.nlargest(5, ["a", "c"])
Out[341]: 
    a  b    c
5  11  f  3.0
3  10  c  3.2
4   8  e  NaN
2   1  d  4.0
6  -1  f  4.0

In [342]: df.nsmallest(3, "a")
Out[342]: 
   a  b    c
0 -2  a  1.0
1 -1  b  2.0
6 -1  f  4.0

In [343]: df.nsmallest(5, ["a", "c"])
Out[343]: 
   a  b    c
0 -2  a  1.0
1 -1  b  2.0
6 -1  f  4.0
2  1  d  4.0
4  8  e  NaN

按 MultiIndex 列排序#

当列是 MultiIndex 时,必须明确指定排序方式,并向 by 参数完全指定所有级别。

In [344]: df1.columns = pd.MultiIndex.from_tuples(
   .....:     [("a", "one"), ("a", "two"), ("b", "three")]
   .....: )
   .....: 

In [345]: df1.sort_values(by=("a", "two"))
Out[345]: 
    a         b
  one two three
0   2   1     5
2   1   2     3
1   1   3     4
3   1   4     2

复制#

pandas 对象的 copy() 方法会复制底层数据(但不复制轴索引,因为它们是不可变的)并返回一个新对象。请注意,很少需要复制对象。例如,只有少数几种方法可以原地修改 DataFrame:

  • 插入、删除或修改列。

  • 赋值给 indexcolumns 属性。

  • 对于同质数据,通过 values 属性或高级索引直接修改值。

明确地说,没有 pandas 方法会产生修改数据的副作用;几乎所有方法都返回一个新对象,而原始对象保持不变。如果数据被修改,那是因为您显式地这样做了。

dtypes#

在很大程度上,pandas 使用 NumPy 数组和 dtypes 来表示 Series 或 DataFrame 的单个列。NumPy 支持 floatintbooltimedelta64[ns]datetime64[ns](请注意,NumPy 不支持时区感知型日期时间)。

pandas 和第三方库在某些方面扩展了 NumPy 的类型系统。本节介绍 pandas 内部进行的扩展。有关如何编写与 pandas 兼容的自定义扩展,请参阅 扩展类型。有关已实现扩展的第三方库列表,请参阅 生态系统页面

下表列出了所有 pandas 扩展类型。对于需要 dtype 参数的方法,可以按所示指定字符串。有关每种类型的更多信息,请参阅各自的文档部分。

数据类型种类

数据类型

标量

数组

字符串别名

时区感知型日期时间

DatetimeTZDtype

Timestamp

arrays.DatetimeArray

'datetime64[ns, <tz>]'

Categorical

CategoricalDtype

(无)

Categorical

'category'

period (时间跨度)

PeriodDtype

Period

arrays.PeriodArray 'Period[<freq>]'

'period[<freq>]',

稀疏

SparseDtype

(无)

arrays.SparseArray

'Sparse', 'Sparse[int]', 'Sparse[float]'

区间

IntervalDtype

Interval

arrays.IntervalArray

'interval', 'Interval', 'Interval[<numpy_dtype>]', 'Interval[datetime64[ns, <tz>]]', 'Interval[timedelta64[<freq>]]'

可空整数

Int64Dtype, …

(无)

arrays.IntegerArray

'Int8', 'Int16', 'Int32', 'Int64', 'UInt8', 'UInt16', 'UInt32', 'UInt64'

可空浮点数

Float64Dtype, …

(无)

arrays.FloatingArray

'Float32', 'Float64'

字符串

StringDtype

str

arrays.StringArray

'string'

布尔型 (含 NA)

BooleanDtype

bool

arrays.BooleanArray

'boolean'

pandas 有两种方式存储字符串。

  1. object dtype,可以容纳任何 Python 对象,包括字符串。

  2. StringDtype,专用于字符串。

通常,我们推荐使用 StringDtype。更多信息请参阅 文本数据类型

最后,可以使用 object dtype 存储任意对象,但应尽可能避免(出于性能以及与其他库和方法的互操作性考虑。请参阅 对象转换)。

DataFrame 方便的 dtypes 属性返回一个 Series,其中包含每列的数据类型。

In [346]: dft = pd.DataFrame(
   .....:     {
   .....:         "A": np.random.rand(3),
   .....:         "B": 1,
   .....:         "C": "foo",
   .....:         "D": pd.Timestamp("20010102"),
   .....:         "E": pd.Series([1.0] * 3).astype("float32"),
   .....:         "F": False,
   .....:         "G": pd.Series([1] * 3, dtype="int8"),
   .....:     }
   .....: )
   .....: 

In [347]: dft
Out[347]: 
          A  B    C          D    E      F  G
0  0.035962  1  foo 2001-01-02  1.0  False  1
1  0.701379  1  foo 2001-01-02  1.0  False  1
2  0.281885  1  foo 2001-01-02  1.0  False  1

In [348]: dft.dtypes
Out[348]: 
A          float64
B            int64
C           object
D    datetime64[s]
E          float32
F             bool
G             int8
dtype: object

Series 对象上,使用 dtype 属性。

In [349]: dft["A"].dtype
Out[349]: dtype('float64')

如果一个 pandas 对象在单列中包含具有多个 dtypes 的数据,则该列的 dtype 将被选择以容纳所有数据类型(object 是最通用的)。

# these ints are coerced to floats
In [350]: pd.Series([1, 2, 3, 4, 5, 6.0])
Out[350]: 
0    1.0
1    2.0
2    3.0
3    4.0
4    5.0
5    6.0
dtype: float64

# string data forces an ``object`` dtype
In [351]: pd.Series([1, 2, 3, 6.0, "foo"])
Out[351]: 
0      1
1      2
2      3
3    6.0
4    foo
dtype: object

通过调用 DataFrame.dtypes.value_counts() 可以找到 DataFrame 中每种类型的列数。

In [352]: dft.dtypes.value_counts()
Out[352]: 
float64          1
int64            1
object           1
datetime64[s]    1
float32          1
bool             1
int8             1
Name: count, dtype: int64

数值 dtypes 会传播并可以在 DataFrames 中共存。如果传递了一个 dtype(无论是直接通过 dtype 关键字,传递的 ndarray,还是传递的 Series),那么它将在 DataFrame 操作中被保留。此外,不同的数值 dtypes 不会合并。以下示例将让您初步了解。

In [353]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=["A"], dtype="float32")

In [354]: df1
Out[354]: 
          A
0  0.224364
1  1.890546
2  0.182879
3  0.787847
4 -0.188449
5  0.667715
6 -0.011736
7 -0.399073

In [355]: df1.dtypes
Out[355]: 
A    float32
dtype: object

In [356]: df2 = pd.DataFrame(
   .....:     {
   .....:         "A": pd.Series(np.random.randn(8), dtype="float16"),
   .....:         "B": pd.Series(np.random.randn(8)),
   .....:         "C": pd.Series(np.random.randint(0, 255, size=8), dtype="uint8"),  # [0,255] (range of uint8)
   .....:     }
   .....: )
   .....: 

In [357]: df2
Out[357]: 
          A         B    C
0  0.823242  0.256090   26
1  1.607422  1.426469   86
2 -0.333740 -0.416203   46
3 -0.063477  1.139976  212
4 -1.014648 -1.193477   26
5  0.678711  0.096706    7
6 -0.040863 -1.956850  184
7 -0.357422 -0.714337  206

In [358]: df2.dtypes
Out[358]: 
A    float16
B    float64
C      uint8
dtype: object

默认值#

默认情况下,整数类型是 int64,浮点类型是 float64无论平台是 32 位还是 64 位。以下所有结果都将是 int64 dtypes。

In [359]: pd.DataFrame([1, 2], columns=["a"]).dtypes
Out[359]: 
a    int64
dtype: object

In [360]: pd.DataFrame({"a": [1, 2]}).dtypes
Out[360]: 
a    int64
dtype: object

In [361]: pd.DataFrame({"a": 1}, index=list(range(2))).dtypes
Out[361]: 
a    int64
dtype: object

请注意,Numpy 在创建数组时会选择平台相关的类型。以下在 32 位平台上导致 int32

In [362]: frame = pd.DataFrame(np.array([1, 2]))

向上转型 (upcasting)#

当与其它类型组合时,类型可能会被向上转型 (upcasted),这意味着它们从当前类型(例如 int)提升到更高级的类型(例如 float)。

In [363]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [364]: df3
Out[364]: 
          A         B      C
0  1.047606  0.256090   26.0
1  3.497968  1.426469   86.0
2 -0.150862 -0.416203   46.0
3  0.724370  1.139976  212.0
4 -1.203098 -1.193477   26.0
5  1.346426  0.096706    7.0
6 -0.052599 -1.956850  184.0
7 -0.756495 -0.714337  206.0

In [365]: df3.dtypes
Out[365]: 
A    float32
B    float64
C    float64
dtype: object

DataFrame.to_numpy() 将返回 dtypes 的最低共同祖先,这意味着它返回一个能够容纳结果同质 dtype NumPy 数组中所有类型的 dtype。这可能会强制进行一些向上转型

In [366]: df3.to_numpy().dtype
Out[366]: dtype('float64')

astype#

您可以使用 astype() 方法显式地将 dtypes 从一种转换为另一种。默认情况下,即使 dtype 没有改变,这些方法也会返回一个副本(传递 copy=False 可以改变此行为)。此外,如果 astype 操作无效,它们将引发异常。

向上转型始终遵循 NumPy 的规则。如果操作中涉及两种不同的 dtypes,则操作结果将使用更通用的 dtype。

In [367]: df3
Out[367]: 
          A         B      C
0  1.047606  0.256090   26.0
1  3.497968  1.426469   86.0
2 -0.150862 -0.416203   46.0
3  0.724370  1.139976  212.0
4 -1.203098 -1.193477   26.0
5  1.346426  0.096706    7.0
6 -0.052599 -1.956850  184.0
7 -0.756495 -0.714337  206.0

In [368]: df3.dtypes
Out[368]: 
A    float32
B    float64
C    float64
dtype: object

# conversion of dtypes
In [369]: df3.astype("float32").dtypes
Out[369]: 
A    float32
B    float32
C    float32
dtype: object

使用 astype() 将一部分列转换为指定类型。

In [370]: dft = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})

In [371]: dft[["a", "b"]] = dft[["a", "b"]].astype(np.uint8)

In [372]: dft
Out[372]: 
   a  b  c
0  1  4  7
1  2  5  8
2  3  6  9

In [373]: dft.dtypes
Out[373]: 
a    uint8
b    uint8
c    int64
dtype: object

通过将字典传递给 astype(),将某些列转换为指定的 dtype。

In [374]: dft1 = pd.DataFrame({"a": [1, 0, 1], "b": [4, 5, 6], "c": [7, 8, 9]})

In [375]: dft1 = dft1.astype({"a": np.bool_, "c": np.float64})

In [376]: dft1
Out[376]: 
       a  b    c
0   True  4  7.0
1  False  5  8.0
2   True  6  9.0

In [377]: dft1.dtypes
Out[377]: 
a       bool
b      int64
c    float64
dtype: object

注意

当尝试使用 astype()loc() 转换一部分列为指定类型时,会发生向上转型。

loc() 尝试将赋值适合当前的 dtypes,而 [] 将覆盖它们,采用右侧的 dtype。因此,以下代码片段会产生意料之外的结果。

In [378]: dft = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})

In [379]: dft.loc[:, ["a", "b"]].astype(np.uint8).dtypes
Out[379]: 
a    uint8
b    uint8
dtype: object

In [380]: dft.loc[:, ["a", "b"]] = dft.loc[:, ["a", "b"]].astype(np.uint8)

In [381]: dft.dtypes
Out[381]: 
a    int64
b    int64
c    int64
dtype: object

对象转换#

pandas 提供了各种函数,试图将 object dtype 的类型强制转换为其他类型。在数据本身已经是正确类型但存储在 object 数组中的情况下,可以使用 DataFrame.infer_objects()Series.infer_objects() 方法将其软转换为正确类型。

In [382]: import datetime

In [383]: df = pd.DataFrame(
   .....:     [
   .....:         [1, 2],
   .....:         ["a", "b"],
   .....:         [datetime.datetime(2016, 3, 2), datetime.datetime(2016, 3, 2)],
   .....:     ]
   .....: )
   .....: 

In [384]: df = df.T

In [385]: df
Out[385]: 
   0  1                    2
0  1  a  2016-03-02 00:00:00
1  2  b  2016-03-02 00:00:00

In [386]: df.dtypes
Out[386]: 
0    object
1    object
2    object
dtype: object

因为数据经过转置,原始推断将所有列存储为 object 类型,infer_objects 将纠正这一点。

In [387]: df.infer_objects().dtypes
Out[387]: 
0             int64
1            object
2    datetime64[ns]
dtype: object

以下函数可用于一维对象数组或标量,以将对象硬转换为指定类型:

  • to_numeric() (转换为数值 dtypes)

    In [388]: m = ["1.1", 2, 3]
    
    In [389]: pd.to_numeric(m)
    Out[389]: array([1.1, 2. , 3. ])
    
  • to_datetime() (转换为日期时间对象)

    In [390]: import datetime
    
    In [391]: m = ["2016-07-09", datetime.datetime(2016, 3, 2)]
    
    In [392]: pd.to_datetime(m)
    Out[392]: DatetimeIndex(['2016-07-09', '2016-03-02'], dtype='datetime64[ns]', freq=None)
    
  • to_timedelta() (转换为时间差对象)

    In [393]: m = ["5us", pd.Timedelta("1day")]
    
    In [394]: pd.to_timedelta(m)
    Out[394]: TimedeltaIndex(['0 days 00:00:00.000005', '1 days 00:00:00'], dtype='timedelta64[ns]', freq=None)
    

要强制转换,我们可以传入一个 errors 参数,该参数指定 pandas 应如何处理无法转换为所需 dtype 或对象的元素。默认情况下,errors='raise',这意味着在转换过程中遇到的任何错误都将引发异常。但是,如果 errors='coerce',则这些错误将被忽略,pandas 将把有问题(无法转换)的元素转换为 pd.NaT(对于日期时间和时间差)或 np.nan(对于数值)。如果您读取的数据大部分是所需 dtype(例如数值、日期时间),但偶尔混有不符合规范的元素,并且您希望将这些元素表示为缺失值,这可能会很有用。

In [395]: import datetime

In [396]: m = ["apple", datetime.datetime(2016, 3, 2)]

In [397]: pd.to_datetime(m, errors="coerce")
Out[397]: DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)

In [398]: m = ["apple", 2, 3]

In [399]: pd.to_numeric(m, errors="coerce")
Out[399]: array([nan,  2.,  3.])

In [400]: m = ["apple", pd.Timedelta("1day")]

In [401]: pd.to_timedelta(m, errors="coerce")
Out[401]: TimedeltaIndex([NaT, '1 days'], dtype='timedelta64[ns]', freq=None)

除了对象转换,to_numeric() 还提供了另一个参数 downcast,它提供了将新(或已是)数值数据向下转型为更小的 dtype 的选项,这可以节省内存。

In [402]: m = ["1", 2, 3]

In [403]: pd.to_numeric(m, downcast="integer")  # smallest signed int dtype
Out[403]: array([1, 2, 3], dtype=int8)

In [404]: pd.to_numeric(m, downcast="signed")  # same as 'integer'
Out[404]: array([1, 2, 3], dtype=int8)

In [405]: pd.to_numeric(m, downcast="unsigned")  # smallest unsigned int dtype
Out[405]: array([1, 2, 3], dtype=uint8)

In [406]: pd.to_numeric(m, downcast="float")  # smallest float dtype
Out[406]: array([1., 2., 3.], dtype=float32)

由于这些方法仅适用于一维数组、列表或标量;它们不能直接用于多维对象(如 DataFrames)。但是,通过 apply(),我们可以有效地将函数“应用”到每一列上。

In [407]: import datetime

In [408]: df = pd.DataFrame([["2016-07-09", datetime.datetime(2016, 3, 2)]] * 2, dtype="O")

In [409]: df
Out[409]: 
            0                    1
0  2016-07-09  2016-03-02 00:00:00
1  2016-07-09  2016-03-02 00:00:00

In [410]: df.apply(pd.to_datetime)
Out[410]: 
           0          1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02

In [411]: df = pd.DataFrame([["1.1", 2, 3]] * 2, dtype="O")

In [412]: df
Out[412]: 
     0  1  2
0  1.1  2  3
1  1.1  2  3

In [413]: df.apply(pd.to_numeric)
Out[413]: 
     0  1  2
0  1.1  2  3
1  1.1  2  3

In [414]: df = pd.DataFrame([["5us", pd.Timedelta("1day")]] * 2, dtype="O")

In [415]: df
Out[415]: 
     0                1
0  5us  1 days 00:00:00
1  5us  1 days 00:00:00

In [416]: df.apply(pd.to_timedelta)
Out[416]: 
                       0      1
0 0 days 00:00:00.000005 1 days
1 0 days 00:00:00.000005 1 days

陷阱#

integer 类型数据执行选择操作很容易将数据向上转型为 floating 类型。在不引入 nans 的情况下,输入数据的 dtype 将被保留。另请参阅 对整数 NA 的支持

In [417]: dfi = df3.astype("int32")

In [418]: dfi["E"] = 1

In [419]: dfi
Out[419]: 
   A  B    C  E
0  1  0   26  1
1  3  1   86  1
2  0  0   46  1
3  0  1  212  1
4 -1 -1   26  1
5  1  0    7  1
6  0 -1  184  1
7  0  0  206  1

In [420]: dfi.dtypes
Out[420]: 
A    int32
B    int32
C    int32
E    int64
dtype: object

In [421]: casted = dfi[dfi > 0]

In [422]: casted
Out[422]: 
     A    B    C  E
0  1.0  NaN   26  1
1  3.0  1.0   86  1
2  NaN  NaN   46  1
3  NaN  1.0  212  1
4  NaN  NaN   26  1
5  1.0  NaN    7  1
6  NaN  NaN  184  1
7  NaN  NaN  206  1

In [423]: casted.dtypes
Out[423]: 
A    float64
B    float64
C      int32
E      int64
dtype: object

而 float dtypes 则保持不变。

In [424]: dfa = df3.copy()

In [425]: dfa["A"] = dfa["A"].astype("float32")

In [426]: dfa.dtypes
Out[426]: 
A    float32
B    float64
C    float64
dtype: object

In [427]: casted = dfa[df2 > 0]

In [428]: casted
Out[428]: 
          A         B      C
0  1.047606  0.256090   26.0
1  3.497968  1.426469   86.0
2       NaN       NaN   46.0
3       NaN  1.139976  212.0
4       NaN       NaN   26.0
5  1.346426  0.096706    7.0
6       NaN       NaN  184.0
7       NaN       NaN  206.0

In [429]: casted.dtypes
Out[429]: 
A    float32
B    float64
C    float64
dtype: object

根据 dtype 选择列#

select_dtypes() 方法根据列的 dtype 实现列的子集选择。

首先,让我们创建一个具有多种不同 dtypes 的 DataFrame

In [430]: df = pd.DataFrame(
   .....:     {
   .....:         "string": list("abc"),
   .....:         "int64": list(range(1, 4)),
   .....:         "uint8": np.arange(3, 6).astype("u1"),
   .....:         "float64": np.arange(4.0, 7.0),
   .....:         "bool1": [True, False, True],
   .....:         "bool2": [False, True, False],
   .....:         "dates": pd.date_range("now", periods=3),
   .....:         "category": pd.Series(list("ABC")).astype("category"),
   .....:     }
   .....: )
   .....: 

In [431]: df["tdeltas"] = df.dates.diff()

In [432]: df["uint64"] = np.arange(3, 6).astype("u8")

In [433]: df["other_dates"] = pd.date_range("20130101", periods=3)

In [434]: df["tz_aware_dates"] = pd.date_range("20130101", periods=3, tz="US/Eastern")

In [435]: df
Out[435]: 
  string  int64  uint8  ...  uint64  other_dates            tz_aware_dates
0      a      1      3  ...       3   2013-01-01 2013-01-01 00:00:00-05:00
1      b      2      4  ...       4   2013-01-02 2013-01-02 00:00:00-05:00
2      c      3      5  ...       5   2013-01-03 2013-01-03 00:00:00-05:00

[3 rows x 12 columns]

以及 dtypes

In [436]: df.dtypes
Out[436]: 
string                                object
int64                                  int64
uint8                                  uint8
float64                              float64
bool1                                   bool
bool2                                   bool
dates                         datetime64[ns]
category                            category
tdeltas                      timedelta64[ns]
uint64                                uint64
other_dates                   datetime64[ns]
tz_aware_dates    datetime64[ns, US/Eastern]
dtype: object

select_dtypes() 有两个参数 includeexclude,允许您指定“给我包含这些 dtypes 的列”(include) 和/或“给我不包含这些 dtypes 的列”(exclude)。

例如,选择 bool

In [437]: df.select_dtypes(include=[bool])
Out[437]: 
   bool1  bool2
0   True  False
1  False   True
2   True  False

您还可以传递 NumPy dtype 层次结构中的 dtype 名称。

In [438]: df.select_dtypes(include=["bool"])
Out[438]: 
   bool1  bool2
0   True  False
1  False   True
2   True  False

select_dtypes() 也适用于通用 dtypes。

例如,选择所有数值和布尔列,同时排除无符号整数。

In [439]: df.select_dtypes(include=["number", "bool"], exclude=["unsignedinteger"])
Out[439]: 
   int64  float64  bool1  bool2 tdeltas
0      1      4.0   True  False     NaT
1      2      5.0  False   True  1 days
2      3      6.0   True  False  1 days

要选择字符串列,必须使用 object dtype。

In [440]: df.select_dtypes(include=["object"])
Out[440]: 
  string
0      a
1      b
2      c

要查看通用 dtype(如 numpy.number)的所有子 dtypes,您可以定义一个返回子 dtypes 树的函数。

In [441]: def subdtypes(dtype):
   .....:     subs = dtype.__subclasses__()
   .....:     if not subs:
   .....:         return dtype
   .....:     return [dtype, [subdtypes(dt) for dt in subs]]
   .....: 

所有 NumPy dtypes 都是 numpy.generic 的子类。

In [442]: subdtypes(np.generic)
Out[442]: 
[numpy.generic,
 [[numpy.number,
   [[numpy.integer,
     [[numpy.signedinteger,
       [numpy.int8,
        numpy.int16,
        numpy.int32,
        numpy.int64,
        numpy.longlong,
        numpy.timedelta64]],
      [numpy.unsignedinteger,
       [numpy.uint8,
        numpy.uint16,
        numpy.uint32,
        numpy.uint64,
        numpy.ulonglong]]]],
    [numpy.inexact,
     [[numpy.floating,
       [numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]],
      [numpy.complexfloating,
       [numpy.complex64, numpy.complex128, numpy.clongdouble]]]]]],
  [numpy.flexible,
   [[numpy.character, [numpy.bytes_, numpy.str_]],
    [numpy.void, [numpy.record]]]],
  numpy.bool_,
  numpy.datetime64,
  numpy.object_]]

注意

pandas 还定义了 categorydatetime64[ns, tz] 类型,它们并未整合到正常的 NumPy 层次结构中,也不会显示在上述函数的结果中。